Kanazawa Analysis Seminar
Modeling chemotaxis and cell aggregation by a parabolic system of PDEs, the Keller-Segel system has played a pivotal role in mathematical biology for over 50 years. Besides its possible blowup in finite time and various modeling applications, e.g., in tumor progression, a mathematical aspect of interest is its numerical discretization, which has been a challenge due to localized high concentrations appearing in the solutions. In this talk we review the model and its prominent properties and introduce new a posteriori estimates that lay the foundation of adaptive mesh refinement schemes. The results are based on stability estimates and suitable reconstructions of the numerical solution. We also discuss implications on well-posedness, provide estimates for modified cell migration models and elucidate the behavior of the error estimator in numerical experiments.
* This is joint work with Jan Giesselmann and Kiwoong Kwon from the Technical University of Darmstadt.
2013年4月,金沢大学の偏微分方程式研究者有志が集まり本セミナーを企画しました。各回の話題は,偏微分方程式の理論的な側面を中心に,セミナー幹事の関心に従い大らかに選択しています。参加者がセミナーを十分楽しみ,勉強し,新しい発見を得られるように,各回の最初の20分から30分程度,講演者の方にはその話題への導入となるような解説をお願いしています。ご関心がある方はどなたでもご自由にご参加ください。 どうぞよろしくお願いいたします。
Patrick van Meurs・大塚 浩史・小俣 正朗・蚊戸 宣幸・木村 正人・榊原 航也・Thomas Geert De Jong・野津 裕史・橋本 伊都子・Norbert Pozar・Julius Fergy Tiongson Rabago
npozar (at) se.kanazawa-u.ac.jp