Introduction to ODE II (Runge-Kutta)

Discretization in time
Here we consider how to discretize ODE in time.

We consider the following initial value problem of ordinary differential equation.

du ©
= Fu®)
u(0) = ug
Here we introduce two methods for time discretization. For easy understanding, we shall start

the following formula:
t+At

u(t+4t) —u(t) = [ f(u@)dr.

The methods are classified how to calculate the righthand side of above.

Euler method
Use rectangular approximation:
[ f(u()dr = Atf(u(t)
Thus, we get
u(t + At) = u(t) + Atf (u(t)).

If we know u(t) we can calculate u(t + At).

2 Order Runge-Kutta method
Use Trapezoidal rule (GZHI):

A

t+At
f f(u(®)dr = 7t { F@® + f(u(t +40)) }
t

Since we do NOT know u(t + At), we use
u(t + At) = u(t) + Atf (u(t))
instead, then we can rewrite approximately,

flult +40) = £ u(®) + Atf(u(®) ).

Eventually, we get the following formula

u(t +48) = u(®) + 5 {f@®) + £ ( u(®) + 4t f(u®)) }



4% Order Runge-Kutta method

Use Simpson's rule (> v 7" v HI|)

t+At A 1
f fu@)dr = ?t { flu(t) +4f (u <t + E‘“)) + f(u(t + 4t)) }
t
Since we do NOT know u (t + %At) and u(t + At), we use

u (t + %At) =~ (u +uy), where,
uy = u(t) + 5 f(u(t)

up = u(t) + 5 f (wy)-

And we use u(t + At) = ug, where u; = u(t) + At%f(uz).
(So, flut+40)=f(us ).)

Totally, we have
u(t + 4t) = u(t) +§ {ko + 2ky + 2k, + k3}

ko = Atf (u(t))

1
ky = Atf (u(t) + 5 ko)

1
ko = Atf (u(®) + 5 k1)

ks = Atf (u(t) + k3)

from matplotlib import pyplot as plt

import numpy as np

def runge_kutta(f, 0, x0, v0, te, h):
ts = np.arange(t0, te, h);

xs =[]

for tin ts:
xs.append(x)

vs.append(v)



k1 =f(t, v, x);

I1=v

k2 = f(t + h/2, v + h/2*k1, x + h/2*11)

12 =v + h/2%1

k3 =f(t + h/2, v + h/2*k2, x + h/2*12)

13 =v + h/2%k2

k4 = f(t + h, v + h*k3, x + h*I3)

14 = v + h*k3

v=v+ (k1 +2%k2 + 2*k3 + k4)/6*h

x=x+ (11 + 2*%12 + 2*13 + 14)/6*h

return (ts, np.array(xs))

fig, ax = plt.subplots()

f=1lambdat,v, x: -x

ts, xs = runge_kutta(f, 0, 10, 0, 100, 0.1)

ax.plot(ts, xs)

plt.show()



