Introduction to ODE II (Runge-Kutta)

Discretization in time

Here we consider how to discretize ODE in time.

We consider the following initial value problem of ordinary differential equation.

$$\begin{cases} \frac{du}{dt} = f(u(t)) \\ u(0) = u_0 \end{cases}$$

Here we introduce two methods for time discretization. For easy understanding, we shall start the following formula:

$$u(t + \Delta t) - u(t) = \int_{t}^{t + \Delta t} f(u(\tau)) d\tau.$$

The methods are classified how to calculate the righthand side of above.

Euler method

Use rectangular approximation:

$$\int_{t}^{t+\Delta t} f(u(\tau)) d\tau \cong \Delta t f(u(t))$$

Thus, we get

$$u(t + \Delta t) = u(t) + \Delta t f(u(t)).$$

If we know u(t) we can calculate $u(t + \Delta t)$.

2nd Order Runge-Kutta method

Use Trapezoidal rule (台形則):

$$\int_{t}^{t+\Delta t} f(u(\tau)) d\tau \cong \frac{\Delta t}{2} \left\{ f(u(t) + f(u(t+\Delta t))) \right\}$$

Since we do NOT know $u(t + \Delta t)$, we use

$$u(t + \Delta t) = u(t) + \Delta t f(u(t))$$

instead, then we can rewrite approximately,

$$f(u(t + \Delta t)) = f(u(t) + \Delta t f(u(t))).$$

Eventually, we get the following formula

$$u(t + \Delta t) = u(t) + \frac{\Delta t}{2} \left\{ f(u(t) + f\left(u(t) + \Delta t f(u(t))\right) \right\}$$

4th Order Runge-Kutta method

Use Simpson's rule (シンプソン則)

$$\int_{t}^{t+\Delta t} f(u(\tau)) d\tau \cong \frac{\Delta t}{6} \left\{ f(u(t) + 4f\left(u\left(t + \frac{1}{2}\Delta t\right)\right) + f(u(t + \Delta t)) \right\}$$

Since we do NOT know $u\left(t+\frac{1}{2}\Delta t\right)$ and $u(t+\Delta t)$, we use

$$\begin{split} u\left(t+\frac{1}{2}\Delta t\right) &= \frac{1}{2}(u_1+u_2), \quad \text{where,} \\ u_1 &= u(t) + \frac{\Delta t}{2}f(u(t)) \\ u_2 &= u(t) + \frac{\Delta t}{2}f(u_1). \end{split}$$

And we use $u(t + \Delta t) = u_3$, where $u_3 = u(t) + \Delta t \frac{\Delta t}{2} f(u_2)$. (So, $f(u(t + \Delta t)) = f(u_3)$.)

Totally, we have

$$u(t + \Delta t) = u(t) + \frac{1}{6} \{k_0 + 2k_1 + 2k_2 + k_3\}$$

$$k_0 = \Delta t f(u(t))$$

$$k_1 = \Delta t f(u(t) + \frac{1}{2}k_0)$$

$$k_2 = \Delta t f(u(t) + \frac{1}{2}k_1)$$

$$k_3 = \Delta t f(u(t) + k_2)$$

from matplotlib import pyplot as plt

import numpy as np

def runge_kutta(f, t0, x0, v0, te, h):

ts = np.arange(t0, te, h);

$$vs = []$$

$$x = x0$$

$$v = v0$$

for t in ts:

xs.append(x)

vs.append(v)

$$k1 = f(t, v, x);$$

$$11 = v$$

$$k2 = f(t + h/2, v + h/2*k1, x + h/2*l1)$$

$$12 = v + h/2*k1$$

$$k3 = f(t + h/2, v + h/2*k2, x + h/2*l2)$$

$$13 = v + h/2*k2$$

$$k4 = f(t + h, v + h*k3, x + h*l3)$$

$$14 = v + h*k3$$

$$v = v + (k1 + 2*k2 + 2*k3 + k4)/6*h$$

$$x = x + (l1 + 2*l2 + 2*l3 + l4)/6*h$$
 return (ts, np.array(xs)) fig, ax = plt.subplots()

ts, xs = runge_kutta(f, 0, 10, 0, 100, 0.1)

ax.plot(ts, xs)
plt.show()