
0 Fourier Series (フーリエ級数)

Let f be a periodic function with period 2π. We shall consider the problem whether is it

possible to expand f using trigonometric function in the following way:

f(x) ∼ 1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx). (0.1)

If it is possible, by integration each term, the coefficients, a0, an, bn, are calculated in the

following form: 

a0 =
1

π

∫ 2π

0
f(x) dx,

an =
1

π

∫ 2π

0
f(x) cosnx dx,

bn =
1

π

∫ 2π

0
f(x) sinnx dx.

(0.2)

We call the right hand side of (0.1) is Fourier expansion of f and the series is called Fourier

series. In this article, we want to justify the meaning of ’∼’. For example, if f is continuous,

the meaning of ∼ should be equality in the sense of continuous function. Usually, continuity of

f is too strong to be assumed. So, we will show what is the appropriate meaning of ’∼’.

1 Preparation

In this section, we will prepare several important theorems. We will focus on Jordan-Lebesgue’s

theorem (in subsection 2) and introduce several lemmas.

The next theorem is very useful to estimate from above and below in some delicate cases.

Theorem 1.1 (Abel’s Inequality). Let us cosider two sequence of numbers, {um}nm=0 and

{vm}nm=0, and {um} is assumed to be nonnegative and nonincreasing sequence, i.e., u0 ≥ u1 ≥

· · ·un−1 ≥ un ≥ 0. Define σp :=

p∑
m=0

vm (0 ≤ p ≤ n), then summation

S := u0v0 + u1v1 + u2v2 + · · ·+ unvn

satisfies the following inequalities:(
min

0≤p≤n
σp

)
u0 ≤ S ≤

(
max
0≤p≤n

σp

)
u0.

Proof. S can be written in the following way:

S = u0σ0 + u1(σ1 − σ0) + +u1(σ2 − σ1) + · · ·+ un(σn − σn−1)

= σ0(u0 − u1) + σ1(u1 − u2) + · · ·+ σnun.
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Because each uj−1 − uj ≥ 0 and un ≥ 0, we have

S = σ0(u0 − u1) + σ1(u1 − u2) + · · ·+ σnun ≤
(
max
0≤p≤n

σp

) n∑
j=1

(uj−1 − uj).

We get the estimate from above. From below, we can do the same way.

Theorem 1.2 (Bonnet’s Theorem : ボンネの定理). Let f be a Reimann integrable function

defined on finite interval [a, b], and φ be a nonnegative and nonincreasing function. Then, there

exists ξ ∈ [a, b] such that ∫ b

a
φ(x)f(x) dx = φ(a+ 0)

∫ ξ

a
f(x) dx.

Proof. Without loss of generality, we can assume φ(a) = φ(a + 0). Divide [a, b] into n equal

subintervals and their nodal points are

a = x0 < x1 < x2 < · · · < xn = b.

Put

h = xi − xi−1 =
b− a

n
.

By Abel’s inequality, (we apply with ui = f(xi) and vi = φ(xi)) there exist k, k′ such that

φ(a+ 0)h
k′∑
i=0

f(xi) ≤ h
N−1∑
i=0

φ(xi)f(xi) ≤ φ(a+ 0)h
k∑

i=0

f(xi). (1.1)

By the definition of Reimann integration, i.e. limn→∞ h
∑n

i=0 f(xi) =
∫ b
a f(x) dx,

For any ε > 0, there exits h such that

h
k′∑
i=0

f(xi) ≤ max
ξ

∫ ξ

a
f(x) dx+ ε

hold. Selecting h smaller enough, and (1.1), we get

φ(a+ 0)
[
min
ξ

∫ ξ

a
f(x) dx− ε

]
≤

∫ b

a
φ(x)f(x) dx ≤ φ(a+ 0)

[
max

ξ

∫ ξ

a
f(x) dx+ ε

]
.

By arbitral choice of ε > 0 and continuity of

∫ ξ

a
f(x) dx with respect to ξ we get the theorem.

Remark 1.1. If we assume φ is positive and nondecreasing function, then there exists ξ ∈ [a, b]

such that ∫ b

a
φ(x)f(x) dx = φ(b)

∫ b

ξ
f(x) dx.

holds.

Here we introduce so called Riemann-Lebesgue theorem.

Theorem 1.3 (Riemann-Lebesgue). For ψ(t) ∈ L1([a, b]), the following holds:∫ b

a
ψ(t) sinnt dt→ 0 as n→ ∞.
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Note. We can generalize this in the following: Let λ be a real paremeter, if ψ(t) ∈ L1((−∞,∞)),

thus, ∫ ∞

−∞
ψ(t) sinλt dt→ 0 as λ→ ∞.

Proof. We divide [a, b] with (’sin’ wave) nodal points,
k

n
π (k = 0,±1,±2, ...), and decomposit

the integral into ∑
p

(∫ 2p+1
n

π

2p
n
π

+

∫ 2p+2
n

π

2p+1
n

π

)
+

∫ a+δ

a
+

∫ b

b−δ′
,

where a + δ is the first sin’s nodal point (i.e.
2p

n
π ) starting from a and b − δ′ is a last nodal

points to b. Now, δ, δ′ <
2p

n
π, thus δ and δ′ are approaching to 0 when n → ∞. Since ψ(t) is

summable, the latter two terms of above approaching to 0 when n→ ∞.

If we put t− π

n
= t′ in the second integral of above, we have sinnt = sinn

(
t′+

π

n

)
= − sinnt′.

Thus the sum of the first term and second term will be

∑
p

∫ 2p+1
n

π

2p
n
π

[
ψ(t)− ψ

(
t+

π

n

)]
sinnt dt.

We can estimate from above by

∣∣∣∑
p

∫ 2p+1
n

π

2p
n
π

[
ψ(t)− ψ

(
t+

π

n

)]
sinnt dt

∣∣∣ ≤ ∫ b

a

∣∣∣ψ(t)− ψ
(
t+

π

n

)∣∣∣ dt. (1.2)

Since ψ(t) is summable, by Lebesgue’s theorem,

we have ∫ b

a
|ψ(t+ h)− ψ(t)| dt→ 0 as h→ 0,

and the right hand side of the inequality (1.2) tends to 0 when n→ ∞.

We here just mention about Lebesgue’s theorem.

Theorem 1.4 (Lebesgue). For ψ(t) ∈ Lp([a, b]), p ≥ 1, then the following holds:∫ b

a
|ψ(t+ h)− ψ(t)|p dt→ 0 as h→ 0.

2 Jordan-Lebesgue

Theorem 2.1 (Jordan-Lebesgue). Let f ∈ L1
loc(R) be a 2π-periodic function and f is

bounded variation near x, and put

Sn(x) :=
1

2
a0 +

n∑
m=1

(am cosmx+ bm sinmx)

then the following holds:

Sn(x) →
f(x+ 0) + f(x− 0)

2
(as n→ ∞).
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Proof. By the definition of Sn, (by changing Fourier coefficient into integral form),

Sn =
1

2π

∫ α+2π

α
f(θ) dθ

+
1

π

n∑
m=1

[
cosmx

∫ α+2π

α
f(θ) cosmθ dθ + sinmx

∫ α+2π

α
f(θ) sinmθ dθ

]
=

1

π

∫ α+2π

α
f(θ)

[1
2
+

n∑
m=1

cosm(x− θ)
]
dθ (∵ addition theorem (加法定理) ).

Again, we use addition theorem for trigonometric function,

2 cos 2pt sin t = sin(2p+ 1)t− sin(2p− 1)t,

adding both side of above,

m∑
p=1

2 cos 2pt sin t =

m∑
p=1

(
sin(2p+ 1)t− sin(2p− 1)t

)
= sin(2m+ 1)t− sin t.

Dividing both side by 2 sin t, we have,

1

2
+

m∑
p=1

cos 2pt =
sin(2m+ 1)t

2 sin t
. (2.1)

Put t = x−θ
2 in above equation, we have

1

2
+

m∑
p=1

cos p(x− θ) =
sin(2m+ 1)

x− θ

2

2 sin
x− θ

2

.

Thus, we have

Sn =
1

π

∫ α+2π

α
f(θ)

sin(2n+ 1)
x− θ

2

2 sin
x− θ

2

dθ.

Here put θ = x+ 2t and change integral variable θ → t, then

Sn =
1

π

∫ β+π

β
f(x+ 2t)

sin(2n+ 1)t

sin t
dt.

Since α can be chosen arbitrary, thus so is β. Put β = −π
2 and divide integral domain into

∫ 0

−π
2

and

∫ π
2

0
and change t→ −t then we have

Sn =

∫ π
2

0

sin(2n+ 1)t

sin t
[f(x+ 2t) + f(x− 2t)] dt. (2.2)

From (2.1), ∫ π
2

0

sin(2n+ 1)t

2 sin t
dt =

π

4
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we have

f(x) =
1

π

∫ π
2

0

sin(2n+ 1)t

sin t
2f(x) dt,

(2.2) becomes

π[Sn − f(x)] =

∫ π
2

0

sin(2n+ 1)t

sin t
[f(x+ 2t) + f(x− 2t)− 2f(x)] dt.

Here we put

φ(t) :=
t

sin t
[f(x+ 2t) + f(x− 2t)− 2f(x)],

then

π[Sn − f(x)] =

∫ π
2

0

sin(2n+ 1)t

t
φ(t) dt.

Now we want to show the right hand side of above tend to 0 when n→ ∞. For this, we divide

integral area into

π[Sn − f(x)] =

∫ δ

0

sin(2n+ 1)t

t
φ(t) dt+

∫ π
2

δ

sin(2n+ 1)t

t
φ(t) dt. (2.3)

In the second term, since φ(t)
t is summable, by Reimann-Lebesgue’s theorem, thus it goes to 0

when n→ ∞.

On the other hand, for the first term, f(x) is bounded variation in the neighbourhood of

x = x, both f(x+ 0) and f(x− 0) exits. So, we change value

f(x) :=
f(x+ 0) + f(x− 0)

2
.

We shall show when δ ↓ 0 the first term of (2.3) becomes smaller independently of m.

From the assumption, the following facts hold.

(i) φ(t) is a BV(bounded variation) function in [0, δ]

(ii) lim
t→+0

φ(t) = 0.

(Remark: Definition) f(x) is a function of bounded variation is iff its tatal variation,

V (f) := sup
P∈P

n∑
i=0

|f(xi+1)− f(xi)|

becomes finete. Here, P is a set of intervals P whose nodal points are x0, x1, ..., xnp .

If we put φ(0) = 0, so φ(t) bocomes continuous at t = 0. On the other hand, BV functions

are docomposit into

φ(t) = p(t)− n(t)

where p(t) and n(t) are [0, t] positive variation and negative variation respectively. Here,

p(t), n(t) are non-dicreasing functions and lim
t→+0

p(t) = lim
t→+0

n(t) = 0.

By using Bonnet’s inequality, (Theorem 1.2), we have

Jδ :=

∫ δ

0

sin(2n+ 1)t

t
p(t) dt = p(δ)

∫ δ

ξ

sin(2n+ 1)t

t
dt (0 ≤ ξ ≤ δ)
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and ∫ δ

ξ

sin(2n+ 1)t

t
dt =

∫ (2n+1)δ

(2n+1)ξ

sin t

t
dt.

Here we recall well known fact, ∫ →∞

0

sinx

x
dx =

π

2
. (2.4)

Since absolute value of
sinx

x
is not integrable, i.e. in the sense of Lebesgue, it is not integrable.

We can get the value of integral by using F (α) :=

∫ ∞

0
e−αx sinx

x
dx and its limit when α→ +0.

By (2.4), there exists positive number A, such that for any h > 0,∣∣∣∫ h

0

sin t

t
dt
∣∣∣ ≤ A

holds. Then we have

|Jδ| ≤ 2A · p(δ).

Therefore, we have ∣∣∣∫ δ

0

sin(2n+ 1)t

t
φ(t) dt

∣∣∣ ≤ 2A[p(δ) + n(δ)] (2.5)

≡ 2A× total variation
0≤t≤δ

[φ].

Since φ(t) is continuous at t = 0, total variation
0≤t≤δ

[φ] is approaching zero accoding to δ.

Combining above and Riemann-Lebesgue’s theorem,∫ π
2

δ

sin(2n+ 1)t

t
φ(t) dt→ 0 (n→ ∞).

On the other hand, we have∣∣∣∫ δ

0

sin(2n+ 1)t

t
φ(t) dt

∣∣∣ ≤ 2A× total variation
0≤t≤δ

[φ] → 0

Thus we got

Sn → f(x) =
f(x+ 0) + f(x− 0)

2
.

We will show that the convergence is uninform with respect to x. Let x ∈ [α′, β′] be a

parameter, and instead using φ(t) we shall use

φ(t;x) :=
t

sin t
[f(x+ 2t) + f(x− 2t)− 2f(x)]

and above argument can be done independent of x.
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3 Heat equation

In this section, we will consider meaning of solution for 1 dimensional heat equation by use of

Fourier series. We consider the following heat equation:

∂

∂t
u =

∂2

∂x2
u (x, t) ∈ Ω× (0,∞) (3.1)

where Ω = (0, π).

Boundary conditions and initial condition are the following:

u(0, t) = g1(t), u(π，t) = g2(t), (0 ≤ t < +∞), (3.2)

u(x, 0) = f(x), x ∈ Ω. (3.3)

For the sake of simplicity, here we assume

g1(t) = g2(t) ≡ 0.

Moreover f(x) satisfies f(0) = f(π) = 0 (so called compatibility condition) and f ∈ C0(Ω) ∩
BV (Ω).

At first, we consider the expansion of f . Fot this purpose at x ∈ [−π，0], we put f(x) =

−f(−x). Then the domain f(x) can be considered [−π, π]. In this interval f(x) is odd function

so the Fourier series constructed just by sinnx, n = 1, 2, 3 · · · , i.e.

f(x) =
∞∑
n=1

cn sinnx.

Note that f is continuous and bounded variation thus the right hand side converges uniformly

in x.

The following formula is a formal solution to the heat equation:

u(x，t) =
∞∑
n=1

e−n2tcn sinnx. (3.4)

We will show (3.4) is the analitical solution.

(Sketch of the proof) At first, we will show the series in (3.4) converges pointwisely in Ω

× (0,∞). It is easy to see

cn =
2

π

∫ π

0
f(x) sinnx dx→ 0 (n→ ∞).

By Riemann-Lebesgue’s theorem，|cn| < M (n = 1, 2, · · · ), moreover，
∑
e−n2t < +∞, it is easy

to see the series is convergent when t > 0.

We will show u(x, t) is C∞ function with respect to (x, t) in t > 0. For this, we calculate

derivative by x formally each term:

∞∑
n=1

ncne
−n2t sinnx (3.5)
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and taking absolute value of each term, it can be estimated like∑
e−n2tn|cn| ≤M

∞∑
n=1

ne−n2t < +∞.

Thus (3.5) converges uniformly, and then the formal derivative by each term is correct. Thus,

∂u

∂x
=

∞∑
n=1

ne−n2tcn cosnx.

in the same way,

∂2u

∂x2
= −

∞∑
n=1

n2e−n2tcn sinnx.

Here we consider derivative by t. Choose δ (> 0) aribitrary and fixed. At δ ≤ t <∞, we consider

formal derivative of u(x, t) by t:∑
n2e−n2t|cn sinnx| ≤M

∑
n

n2e−δn2
< +∞

can be estimated from above. Thus derivative by t converges uniformly then it is correct.

Then，

∂u

∂t
= −

∑
n2e−n2tcn sinnx.

Therefore, u(x，t) is a solution to the heat equation at t > 0. In the same way, at t > 0, it is

C∞.

Next, we consider the behavior of the solution when t→ +0. Actually,

u(x，t) → f(x)

uniformly by x. Note that the Fourier series
∑
cn sinnxが converges uniformly and {e−n2t}n=1,2,...

is positive decreasing. Applying Abel’s inequality, for arbitral ε, there exists N such that∣∣∣∣∣
∞∑

n=N+1

e−n2tcn sinnx

∣∣∣∣∣ < ε, (t ≥ 0) (3.6)

holds. We will consider more cafully in this treatment. Since {e−n2t}n=1,2,... is positive nonin-

creasing seaquence, by Abel’s inequality (Theorem 1.1), put

un = e−n2t, vn = cn sinnx.

Applying Abel’s inequality,

∞∑
n=N+1

en
2tcn sinnx can be estimated from above

≤ max
N≤p<∞

p∑
n=N

e−tcn sinnx.

On the other hand, from below

≥ min
N≤p<∞

p∑
n=N

e−tcn sinnx.

8



Then there exists p0 such that,∣∣∣ ∞∑
n=N+1

e−n2tcn sinnx
∣∣∣ ≤ ∣∣∣e−t

p0∑
n=N

cn sinnx
∣∣∣

≤
∣∣∣ p0∑
n=N

cn sinnx
∣∣∣

holds. On the other hand, cn sinnx converges uniformly, for sufficient large N ,∣∣∣ ∞∑
n=N+1

e−n2tcn sinnx
∣∣∣ < ε.

Therefore, (3.6) holds.

As a consquence,

|u(x, t)− f(x)| ≤

∣∣∣∣∣
N∑

n=1

(e−n2t − 1)cn sinnx

∣∣∣∣∣+
∣∣∣∣∣

∞∑
n=N+1

e−n2tcn sinnx

∣∣∣∣∣
+
∣∣∣ ∞∑
n=N+1

cn sinnx
∣∣∣

last two terms are less than 2ε independent of t, and the first term approaches to 0 when t→ +0.

(QED)．

4 Orthgonal system in L2(Ω)

In this section we will consider Fourier series in wider point of view.

Let Ω be an opne set in RN . (It is OK if Ω = RN .)

Let L2(Ω) be a set of complex valued function defined on Ω, wiht square summable. In other

word,the functions above are defined in x = (x1, ..., xN ) ∈ Ω and complex valued mesurable

functions with ∫
Ω
|f(x)|2 dx <∞.

We call above set L2(Ω) whose norm is

∥f∥L2(Ω) :=
(∫

Ω
|f(x)|2 dx

) 1
2
.

If the functions f and g are coincied with each other in a.e. in Ω, we consider f and g are the

same element in L2.

It is well known L2(Ω) is complete Riesz-Fischer’s theorem).

すなわち, {fn} が L2(Ω) の Cauchy列:

∥fn − fm∥L2(Ω) → 0 (n,m→ ∞)

ならば, f ∈ L2(Ω) が存在して, ∥fn − f∥L2(Ω) → 0 (n,m→ ∞) が成り立つ.

We will introduce several terminology.
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Definition 4.1 (Orthonormal system). We call the function series {φn} in L2(Ω) is a or-

thonormal system, if it satisfies in the following two conditions:

(OS1) {φn} are orthogonal each other, i.e.∫
Ω
φn(x)φm(x) dx = 0 (n ̸= m),

(OS2) ∫
Ω
|φn(x)|2 dx = 1 (n = 1, 2, ...)

Definition 4.2 ((Complete orthonormal system)). We call an orthonormal system {φn}
in L2(Ω) is complete when for all f ∈ L2(Ω), the following condition holds:∫

Ω
f(x)φn(x) dx = 0 (∀n = 1, 2, ...) ⇔ f = 0 a.e. Ω.

Here we consider Fourier expansion using orthonormal system. If {φn} is orthonormal system,

we consider the following Fourier expansion of f ∈ L2(Ω):

f(x) ∼ c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x) + · · · (4.1)

cn :=

∫
Ω
f(x)φn(x) dx. (4.2)

We call cn Fourier coefficient.

Note that the right hand side of (4.1) is convergent sequence in L2(Ω). Actually,

0 ≤
∫
Ω
|f(x)−

m∑
i=1

ciφi(x)|2 dx =

∫
Ω

[
f(x)−

m∑
i=1

ciφi(x)
][
f(x)−

m∑
i=1

ciφi(x)
]

=

∫
Ω
|f(x)|2 dx+

m∑
i=1

|ci|2
∫
Ω
|φi(x)|2 dx−

m∑
i=1

ci

∫
Ω
f(x)φi(x) dx−

m∑
i=1

ci

∫
Ω
f(x)φi(x) dx

=

∫
Ω
|f(x)|2 dx−

m∑
i=1

|ci|2

therefore, ∫
Ω
|f(x)−

m∑
i=1

ciφi(x)|2 dx =

∫
Ω
|f(x)|2 dx−

m∑
i=1

|ci|2. (4.3)

Thus we have
∑
i=1

|ci|2 <∞ and

∞∑
i=1

|ci|2 ≤
∫
Ω
|f(x)|2 dx (Bessel’s inequality). (4.4)

hold. By Riesz-Fischer’s theorem, we have the exsistense of

φ = lim
m→∞

m∑
i=1

ciφi in L2(Ω). (4.5)
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(∵) If we put

fm(x) :=

m∑
i=1

ciφi(x),

then, for m′ > m, ∫
Ω
|fm(x)− fm′(x)|2 dx =

m′∑
i=1

|ci|2 → 0 (m→ ∞)

and we can apply Riesz-Fischer’s theorem.

We will show φ, Fourier series of f coincide.

At first Fourier expansion of φ ∈ L2 coincide with φ itself. Actually, since {φi} is orthogonal

system, ∫
Ω
φ(x)φn(x) dx =

∫
Ω

(
lim

m→∞

m∑
i=1

ciφi(x)
)
φn(x) dx = lim

m→∞

m∑
i=1

ci

∫
Ω
φiφn(x) dx

= cn =

∫
Ω
f(x)φn(x) dx.

here we exchanged summation and integration by Cauchy-Schwarz’s inequality.

Therefore, ∫
Ω
[f(x)− φ(x)]φn(x) dx = 0 (n = 1, 2, · · · ).

If {φn(x)} is complete, f = φ.

Then from (4.3),
∞∑
i=1

|ci|2 =
∫
Ω
|f(x)|2 dx (Parsevalの等式) (4.6)

hold.

On the other hand, if (4.6) hold, then recalling (4.3), we see f = φ.

We will also consider the case that {φi} is not complete. In this case, there exist f ∈ L2(Ω),

f ̸= 0, such that it is perpendicular to any φi, i.e.,∫
Ω
f(x)φi(x) dx = 0 (i = 1, 2, ...)

hold. We see Fourier coefficients of f are all 0, f ’s Fourier expansion φ = 0, then f ̸= φ.

We can sum up above in the following theorem.

Theorem 4.3 (L2 Fourier expansion). The followings are equivalent:

(i) An orthonormal system φn is complete in L2(Ω).

(ii) For all f ∈ L2(Ω), Parseval’s inequality (4.6) holds.

(iii) For any f ∈ L2(Ω), f ’s Fourier expansion coincide with f itself.

So far, we have considered the feature of f ’s Fourier expansion. Here we consider on the

oposite way. Let {φi} be an complete orthonormal system, then for any complex sequence

(c) = {ci} with
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∞∑
i=1

|ci|2 <∞, (4.7)

define f by

f(x) := c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x) + · · · .

The right hand side is defined in L2-limit. In this case, f ’s Fourier series coincide with the right

hand side of above.

Here we consider (c) satisfying (4.7). We write ℓ2 the set of (c) with norm

∥(c)∥ℓ2 :=
( ∞∑
i=1

|ci|2
) 1

2
.

Then, f ’s Fourier expansion defines an isometric mapping from L2(Ω) into ℓ2 by Parseval’s

inequality.

At the end of this secion, we remark the feature of orthonormal system, {φn}. Let {φn} be a

complete orthonormal system, then

(1) If function series
∑
cnφ in the open set U in Ω converges uniformly, and f and each φn are

continuous in U , then

f(x) =

∞∑
n=1

cnφn(x), (x ∈ U)

holds.

(2) Even if a function series
∑
cnφ is not converges uniformly, the following:

∞∑
n=1

|cn||φn(x)| <∞

hold on almost every U , and if Φ satisfying

∞∑
n=1

|cn||φn(x)| < Φ(x),

∫
U
Φ(x)2 dx <∞

exists, then

f(x) =
∞∑
n=1

cnφn(x)

hold almost every x in U .

Example

The trigonometric system {1, cosx, sinx, · · · , cosnx, sinnx, · · · } on (0, 2π) is complete in L2(0, 2π).

Let f be a 2π periodic function in C1, then Fourier coefficients satisfy the following relation

πan =

∫ 2π

0
f(x) cosnx dx = − 1

n

∫ 2π

0
f ′(x) sinnx dx = −πb

′
n

n
,

πbn =

∫ 2π

0
f(x) sinnx dx =

1

n

∫ 2π

0
f ′(x) cosnx dx =

πa′n
n
.

where, (a′n, b
′
n) are Fourier coefficients of f ′.

12



Thus we have f ’s Fourier expansion converges uniformly. Actually,

∞∑
n=1

|an|+ |bn| ≤
∞∑
n=1

1

n
(|a′n|+ |b′n|) ≤

( ∞∑
n=1

1

n2

) 1
2
(
2

∞∑
n=1

|a′n|2 + |b′n|2
) 1

2

　 hold and the right hand side is finete by Bessel’s inequality. Then the right hand side is finite

and is a convergence..

Therefore, Fourier series of f converges uniformly to f itself.

5 Fourier’s integration formula

5.1 Fourier expansion in bounded interval

So far, we have considered Fourier expansion of 2-π periodic function. The question arouse,

for the functions which have no periodicity, can we consider Fourier expansion?

Let f ∈ L1(R) be a function without period, but consider that it has ‘∞’ periodic function.

Let us consider Fourier expansion of periodic function defined in (−ℓ, ℓ). It can be

f(x) ∼ a0
2

+
∞∑
n=1

(
an cos

nπ

ℓ
x+ bn sin

nπ

ℓ
x
)

where,

a0 :=
1

ℓ

∫ ℓ

−ℓ
f(ξ) dξ, an :=

1

ℓ

∫ ℓ

−ℓ
f(ξ) cos

nπ

ℓ
ξ dξ, bn :=

1

ℓ

∫ ℓ

−ℓ
f(ξ) sin

nπ

ℓ
ξ dξ.

The purpose of this is to extend this to ∞-perodic functions. We first, consider the behavior

of expansion when ℓ→ ∞.

Note that a0 → 0, otherwise series can not be integrable. Using addtion theorem of trigono-

metric function, we can calculate in the following way(we exchage summation and integration

formally):

∞∑
n=1

(
an cos

nπ

ℓ
x+ bn sin

nπ

ℓ
x
)
=

∞∑
n=1

1

ℓ

∫ ℓ

−ℓ
f(ξ) cos

nπ

ℓ
(x− ξ) dξ

=

∫ ℓ

−ℓ
f(ξ)

∞∑
n=1

1

ℓ
cos

nπ

ℓ
(x− ξ) dξ

=
1

π

∫ ℓ

−ℓ
f(ξ)

( ∞∑
n=1

∆ν cos νn(x− ξ)
)
dξ,

where, ∆ν :=
π

ℓ
, νn :=

nπ

ℓ
.

If ℓ → ∞ then, ∆ν → 0 and the definition of Riemann integral (precisely it is improper

integral.), we have
∞∑
n=1

∆ν cos νn(x− ξ) →
∫ ∞

0
cos ν(x− ξ) dν.

13



Thus,

a0 +

∞∑
n=1

(
an cos

nπ

ℓ
x+ bn sin

nπ

ℓ
x
)
→ 1

π

∫ ∞

−∞
f(ξ)

∫ ∞

0
cos ν(x− ξ) dν dξ

=
1

π

∫ ∞

0
dν

∫ ∞

−∞
f(ξ) cos ν(x− ξ) dξ.

We have formally,

πf(x) =

∫ ∞

0
dν

∫ ∞

−∞
f(ξ) cos ν(x− ξ) dξ. (5.1)

By above condideration, we can define Fourier transform as a limit of the Fourier series. In

the next section, we will discuss precise mathematical treatment.

5.2 Fourier’s integralation formula

In this subsection, we will treat above formula precisely. As we have already shown in the

previous sections,

πSn =

∫ α+2π

α

sin(2n+ 1)
x− θ

2

2 sin
x− θ

2

f(θ) dθ.

Recall that f was 2π-periodic function. We will change this formula using, この式を書き換えて
みる.

sin(2n+ 1)
x− θ

2
= sinn(x− θ) cos

x− θ

2
+ cosn(x− θ) sin

x− θ

2
,

we have,

πSn =

∫ α+2π

α
f(θ) sinn(x− θ) cot

x− θ

2

dθ

2
+

1

2

∫ α+2π

α
f(θ) cosn(x− θ) dθ.

The second term of the right converges to zero when n → ∞ by Riemann-Lebesgue’s theorem.

Therefore, (if we assume that f is bounded variation in the neighbourhood of θ = x, the first

term is

lim
n→∞

∫ α+2π

α
f(θ) sinn(x− θ) cot

x− θ

2

dθ

2
=
π

2
[f(x+ 0) + f(x− 0)].

In above relation, instead f(θ), we use

φ(θ) =


2f(θ)

x− θ
tan

x− θ

2
,

(
|θ − x| < δ

(
<
π

2

))
0, otherwise,

then, φ is bounded variation near θ = x and φ(x ± 0) = f(x ± 0), by Riemann-Lebesgue’s

theorem, we got

lim
n→∞

∫ α+2π

α

f(θ)

x− θ
sinn(x− θ)dθ =

π

2
[f(x+ 0) + f(x− 0)]. (5.2)
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図 1: Relation between f and φ

Here we change the feature of f . So far, f was 2π-periodic function, here we ommit the

assumption, and let ∫ +∞

−∞
|f(θ)| dθ <∞.

Again, we assume, f is bounded variation in arbitral finite interval, thus, for any x, with

α < x < α+ 2π, (5.2) hold and both∫ α

−∞

f(θ)

x− θ
sinn(x− θ)dθ,

∫ ∞

α+2π

f(θ)

x− θ
sinn(x− θ)dθ,

are converges to zero when n→ ∞ by Riemann-Lebesgue’s theorem.

Conbining above facts, we have

Theorem 5.1 (Fourier’s formula). Let, f ∈ L1
loc(R), ∀I ⊂⊂ R, f ∈ BV (I). Then このとき,

lim
n→∞

∫ ∞

−∞

f(θ)

x− θ
sinn(x− θ) dθ =

π

2
[f(x+ 0) + f(x− 0)].

hold.

We will change formula in above, put

Fn :=

∫ ∞

−∞

f(θ)

x− θ
sinn(x− θ) dθ

and using
sinn(x− θ)

x− θ
=

∫ n

0
cosν(x− θ) dν

we have

Fn =

∫ ∞

−∞
dθ

∫ n

0
f(θ) cos ν(x− θ) dν.

Here we use Fubini’s theorem, we got

Fn =

∫ n

0
dν

∫ ∞

−∞
f(θ) cos ν(x− θ) dθ.

By above we have the following:
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Theorem 5.2 (Fourier’s integralatin formula). Assume as above,

lim
A→∞

∫ A

0
dν

∫ ∞

−∞
f(θ) cos ν(x− θ) dθ =

π

2
[f(x+ 0) + f(x− 0)]. (5.3)

holds.

Note that this is same as (5.1). Moreover (5.3) is the same as Fourier’s inverse transfom.

6 Fourier transform

In this section, we will define Fourier transform and discuss its feature.

For the Fourier transform, we already got its invers transformation by (5.3).

We will introduce complex valued expression, since it is used in the standard formula.

Up to now, f was assumed to be real fucntions, but almost all arguments holds for complex

valude functions. Acutually, just divide into

f = f1 + if2

real and imaginary part. If |f | is ummable, automatically f1, f2 are summable, and oppsit is

also holds. BV is also the same.

From now on, let f be a complex valued function. For the sake of simplicity, in above (5.3),

substitute ν into 2πν, by addition formula of trigonometric functions,, we have

lim
A→∞

2

∫ A

0
[C(ν) cos 2πνx+ S(ν) sin 2πνx] dν =

1

2
[f(x+ 0) + f(x− 0)], (6.1)

where,

C(ν) =

∫ ∞

−∞
f(θ) cos 2πνθ dθ, S(ν) =

∫ ∞

−∞
f(θ) sin 2πνθ dθ.

The equality (6.1) is the same as subustitution of integer n in cos 2πnx, sin 2πnx in Fourier

series into real parameter.

We assumed ν ≥ 0, but actually it has meaning when ν < 0, we have

C(−ν) = C(ν), S(−ν) = −S(ν).

Taking care of above, (6.1) can be written in the following:

1

2
(f(x+ 0) + f(x− 0)) = lim

A→∞

∫ A

−A
[C(ν) cos 2πνx+ S(ν) sin 2πνx] dν. (6.2)

We define for f , f̂ ,

f̂(ν) :=

∫ ∞

−∞
f(θ)e−2πiνθ dθ.

From Euler formula,

f̂(ν) = C(ν)− iS(ν).

therefore, in (6.2), C, S are even, odd fucntions respectively, we have,

lim
A→∞

∫ A

−A
[C(ν)− iS(ν)]e2πiνx dν = lim

A→∞

∫ A

−A
f̂(ν)e2πiνx dν.

Changing integral valuable, we get the following:.
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Theorem 6.1 (Fourier transform and inverse transform). Let f ∈ L1(R) be BV in arbitral

bounded interval. Define

f̂(ξ) :=

∫ ∞

−∞
e−2πixξf(x) dx (6.3)

(Fourier transform), we have

lim
A→∞

∫ A

−A
e2πixξ f̂(ξ) dξ =

1

2
[f(x+ 0) + f(x− 0)] (6.4)

holds. Especially, if f̂ is summable and f is continuous, then (6.4), we can express

f(x) =

∫ ∞

−∞
e2πixξ f̂(ξ) dξ (6.5)

and it is called inverse transform.

Here we will introduce the definition of Fourier transform.

Definition 6.2 (Fourier transform). Let f ∈ L1(R) be BV in any finite bounded domain.

We call

f̂(ξ) :=

∫ ∞

−∞
e−2πixξf(x) dx

f̂ is Fourier transform of f . Also, we call it Fourier image and write Ff . Here, Ff = f̂ .

Equalities (6.4) and (6.5) are called Inverse formula of Fourier transform.

The formula (6.4) is a little bit complicated, it comes from that f̂ not ususally summable.

The following is its example.

Example 1. Consider function f , for A ≥ 0,

f(x) =

1 if |x| ≤ A

0 if |x| > A.

Then f ’s Fourier transform f̂ is

f̂(ξ) =

∫ A

−A
e−2πixξ dx =

[e−2πixξ

−2πiξ

]x=A

x=−A
=

sin 2πAξ

πξ
.

This f̂ is not summable.

We will introduce several expamples for Fourier transform.

Example 2. Here, we calculate Fourier transform f(x) = exp
(
−|x|2

2

)
. By the definition,

f̂(ξ) =

∫ ∞

−∞
e−2πiξxf(x) dx =

∫ ∞

−∞
e−2πiξx− |x|2

2 dx

=

∫ ∞

−∞
e−

(x+2πiξ)2

2
−2π2ξ2 dx = e−2π2ξ2

∫ ∞

−∞
e−

(x+2πiξ)2

2 dx.

The integration

∫ ∞

−∞
e−(x+2πiξ)2/2 dx can be calculated the following manner.
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図 2: Integrate along ΓR, Red line is {z = x+ 2πiξ : −R ≤ x ≤ R}

We introduce complex function e−z2/2. The above integration can be calculated using complex

intergral. As in the graph of 2, integralte along red line, {z = x + 2πiξ : −R ≤ x ≤ R} and

taking limit R→ ∞.

Since e−z2/2 is a analitic function on C, by the Cauchy’s integration theorem, we have∫
ΓR

e−z2/2 dz = 0.

On the other hand, the right hand side above integration will be divided into four lines, and

we have∫ R

−R
e−x2/2 dx+

∫ 2πξ

0
e−(R+iy)2/2 dy +

∫ −R

R
e−(x+2πiξ)2/2 dx+

∫ 0

2πξ
e−(−R+iy)2/2 dy.

When R → ∞, |e−(±R+iy)2/2| ≤ e(−R2+y2)/2 → 0 then, the second and forth term of the

integration converges to 0. Then we got,∫ ∞

−∞
e−(x+2πiξ)2/2 dx =

∫ ∞

−∞
e−x2/2 dx =

√
2π.

By above arguement, we got

f̂(ξ) =
√
2πe−2π2ξ2 .

Example 3. Let A ≥ 0, then

f(x) =


1 if 0 < x < A

−1 if −A < x ≤ 0

0 if |x| ≥ A.

Calculatef f ’s Fourier transform:

f̂(ξ) =

∫ 0

−A
−e−2πixξ dx+

∫ A

0
e−2πixξ dx = −

[e−2πixξ

−2πiξ

]x=0

x=−A
+
[e−2πixξ

−2πiξ

]x=A

x=0

=
1

πiξ
− e2πiAξ + e−2πiAξ

2πiξ
=

1

πiξ
(1− cos 2πAξ).
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6.1 Feature of Fourier transform

Fact(a) f, f ′ are both continuous and summable, Calculating integration by part of the

definition of Fourier transform, and considering f(x) → 0 when x→ ±∞, we have

2πiξf̂(ξ) =

∫ ∞

−∞
e−2πixξf ′(x) dx, (6.6)

moreover,

2π|ξ||f̂(ξ)| ≤ ∥f ′∥L1

holds.

In general, if f is Cm and f, f ′, . . . , f (m) are all summable,

F [f (m)] = (2πiξ)mF [f ], (6.7)

|2πiξ|mf̂(ξ) ≤ ∥f (m)∥L1 (6.8)

hold.

Roughly speaking, if the function and its derivative is summable, the regularity of f is pro-

protionate to the decay order of f̂ at infinity.

Fact(b) Let |x||f | be summable,then

f̂(ξ) =

∫ ∞

−∞
e−2πixξf(x) dx

it is possible to taking derivative under integration, we have

f̂ ′(ξ) =

∫ ∞

−∞
−2πixf(x)e−2πixξ dx.

More generalm f and xmf m = 1, 2, 3, · · · are summable then f̂ is Cm functions and

dm

dξm
f̂(ξ) = F [(−2πixξ)mf ], (6.9)

|f̂ (m)(ξ)| ≤ ∥(2πx)mf∥L1 (6.10)

hold.

This shows that if f ’s decay order is faster at infinity, then existense of the higher order

derivative of f̂ is guaranteed,

From the fact (a), f, f ′, f ′′ are continuous and summable then f̂ becomes summable, the

inverse transform holds in the sense of (6.5).

Fact(c) Equality F [f(x− h)] = e−2πihξ f̂(ξ) hold.

Actually, ∫ ∞

−∞
e−2πixξf(x− h) dx =

∫ ∞

−∞
e−2πi(x+h)ξf(x) dx = e−2πihξ f̂(ξ),
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hold.

Here we discuss important equality about Foureir series and Parseval’s equality.

This is a special case of so called Plancherel’s theorem.

Lemma 6.1. Let f be C2 function and f, f ′, f ′′ are all summable, then the following equality

holds: ∫ ∞

−∞
|f(x)|2 dx =

∫ ∞

−∞
|f̂(ξ)|2 dξ. (6.11)

Proof.

As we have discussed above, from assumption, f̂ is summable and (6.4) hold.

Therefore ∫ ∞

−∞
|f(x)|2 dx =

∫ ∞

−∞
f(x)f(x) dx =

∫ ∞

−∞
f(x) dx

∫ ∞

−∞
f̂(ξ)e2πixξ dξ.

Since f, f̂ ∈ L1, by Fubini’s theorem,

=

∫ ∞

−∞
f̂(ξ) dξ

∫ ∞

−∞
f(x)e−2πixξ dx

=

∫ ∞

−∞
f̂(ξ)f̂(ξ) dξ =

∫ ∞

−∞
|f̂(ξ)|2 dξ

hold.

If one just see the results of above lemma, it seems OK, if we assume only f ∈ L2. But if the

assumption is just f ∈ L2, f is not always summable, (Because the space is hole R, we can not

determine inclusion relation.), the Fourier transform f̂ can not be defined by integration.

On the other hand, from the feature of Fourier transform, F studied above sections, it is an

isometric operator defined in dense subset of L2.

We can extend it to the isometric operator defined on whole L2.

Here we ommit the precise discussion. (This will be one of further work.)

Here we summarize the discussion in this section.

Theorem 6.3. Let f = f(x) and g = g(ξ) are summable, then

Ff :=

∫ ∞

−∞
e−2πixξf(x) dx,

Fg :=

∫ ∞

−∞
e2πixξg(ξ) dξ,

and we call them Fourier transform and Inverse Fourier transform respectively.

Moreover, if f, g are C2 and up to second derivative, they are summable, then

FFf = f (6.12)

FFg = g (6.13)

hold and

∥Ff∥L2 = ∥f∥L2 , ∥Fg∥L2 = ∥g∥L2 . (6.14)
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Proof. We just should show (6.13). If g is summable and

Fg = Fg

hold and and thus we have

FFg = F · Fg = FFg.

Applying (6.12,), we got

= g = g.

Appendix 1. Heat equation and Fourier transform

In this section, we consider how to solve the heat equation in R1. ut = uxx in (x, t) ∈ (−∞,∞)× (0,∞)

u(x, 0) = f(x)

Apply Fourier transform to the both side of above equation, then

( left ) = ût =
d

dt
û

( right ) =

∫ ∞

−∞
e−2πiξxuxx dx

= (2πiξ)2
∫ ∞

−∞
e−2πiξxu dx

= (2πiξ)2û.

If we write û(ξ, t) as a transformed function, then the heat equation will be
d

dt
û = (2πiξ)2û

û(ξ, 0) = f̂(ξ).

This became ordinary differential equation of û. For every ξ, this is ture. We solve this equation,

then

û(ξ, t) = f̂(ξ)e(2πiξ)
2t = f̂(ξ)e−4π2ξ2t.

Apply inverse Fourier transform to above and allow to exchange integration order, then,

u(x, t) =

∫ ∞

−∞
e2πiξxe−4π2ξ2t

(∫ ∞

−∞
e−2πiyξf(y) dy

)
dξ

=

∫ ∞

−∞
f(y)

∫ ∞

−∞
e−2πi(y−x)ξe−4π2ξ2t dξ dy

=

∫ ∞

−∞
f(y) ̂e−4π2ξ2t(y − x) dy.

Recall,

̂e−4π2ξ2t(z) =
1√
4πt

exp
(
−z

2

4t

)
(A.1)
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then

u(x, t) =

∫ ∞

−∞

1√
4πt

exp
(
−(x− y)2

4t

)
f(y) dy.

Thus we got a solution.

Here, we prove the equation (A.1). For this purpose, apply the following theorem with chang-

ing a = 4πt.

Theorem. Fourier transform of f(x) = e−πax2
is

f̂(ξ) = a−
1
2 exp

(
−πξ

2

a

)
.

Proof. By using change of variable, x 7→ x/
√
a, we should show just the case a = 1. Thus we

calculate

f̂(ξ) =

∫ ∞

−∞
e−2πiξxe−πx2

dx

=

∫ ∞

−∞
e−π(x+iξ)2e−πξ2 dx

= e−πξ2
∫ ∞

−∞
e−π(x+iξ)2 dx.

Now, integration of e−πz2 , if |Imz| bounded, by the Cauchy’s integration theorem, the line

integral can be moved on Imz = 0. Then,∫ ∞

−∞
e−πx2

dx = 1

thus we have

f̂(ξ) = e−πξ2 .

Appendix 2. The fundamental solution

Here we consider the following partial differental equation.

∂E

∂t
− Exx = δ(x, t) (x, t) ∈ R× R (A.2)

Here, δ(x, t) = δ(x)δ(t). The meaning of above, we consider∫ ∞

−∞
δ(x)δ(t)φ(t) dt = δ(x)

∫ ∞

−∞
δ(t)φ(t) dt,

something like above. Here, we racall, the distribution sense of derivative of Heaviside function

will be the Dirac’s delta function, δ. The Heaviside function is defined

H(t) =

1 (t ≥ 0)

0 (t < 0).

22



Note that the definition is sometimes different from books and papers, but the important thing

is that the origin it is discontinuous dispite the value of it. For any φ ∈ C1
c (R),∫ ∞

−∞
H ′(t)φ(t) dt = −

∫ ∞

−∞
H(t)φ′(t) dt (∵ definiton of derivative)

= −
∫ ∞

0
φ′(t) dt (∵ definition of Heaviside)

= φ(0) =

∫ ∞

−∞
δ(t)φ(t) dt (∵ definition of delta)

Apply Fourier transform to (A.2) with respect to x, we have

d

dt
Ê(ξ, t) + 4π2ξ2Ê(ξ, t) = δ(t). (A.3)

Here, we used δ̂(x) = 1. Then (A.3) can be considered to be the following ordinary differential

equation:
d

dt
F (t)− αF (t) = δ(t).

Put F (t) = eatG(t), then
dG

dt
= e−atδ(t).

Thus, for any φ ∈ C∞
0 (−∞,∞), we see from

⟨e−atδ(t), φ(t)⟩ :=
∫ ∞

−∞
e−atδ(t)φ(t) dt = e−a·0φ(0) = φ(0),

e−atδ(t) is coincide with δ(t). Then the equation is

dG

dt
= δ(t).

This means

G(t) = H(t) + C,

where H is the Heaviside function and C is a constant. Now, we choose initial data to be C = 0,

we see F (t) = eatH(t). From this we have

Ê(ξ, t) = H(t)e−4πξ2t.

Apply Fourier inverse transform, we have逆変換により,

E(x, t) = H(t)(4πt)−
1
2 exp

(
−x

2

4t

)
= H(t)Kt(x).

We call this is the fundamental solution to the heat equation.

Note.

u(x, t) = g ∗ E ( convolution )

=

∫ t

−∞

∫
R
g(y, s)E(x− y, t− s) dy ds
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is a formal solution to
∂u

∂t
= ∆u+ g(x, t).

Proof

(∂t −∆)(g ∗ E) = g ∗ (∂t −∆)E

= g ∗ δ
= g
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