0 Fourier Series (7 —') THHE)

Let f be a periodic function with period 2w. We shall consider the problem whether is it
possible to expand f using trigonometric function in the following way:

1 > .
f(x) ~ §a0 + Z(an cos nx + by, sinnx). (0.1)

n=1
If it is possible, by integration each term, the coefficients, ag, a,, by, are calculated in the

following form:

1 27
w =1 [ @
T Jo
1 2
an = — (x) cosnx dz, (0.2)
T Jo
1 2m
b, =— (x) sinnz dz.
T Jo

We call the right hand side of (0.1) is Fourier expansion of f and the series is called Fourier
series. In this article, we want to justify the meaning of ’~’. For example, if f is continuous,
the meaning of ~ should be equality in the sense of continuous function. Usually, continuity of

)

f is too strong to be assumed. So, we will show what is the appropriate meaning of '~’.

1 Preparation

In this section, we will prepare several important theorems. We will focus on Jordan-Lebesgue’s
theorem (in subsection 2) and introduce several lemmas.
The next theorem is very useful to estimate from above and below in some delicate cases.

Theorem 1.1 (Abel’s Inequality). Let us cosider two sequence of numbers, {u,,}”, __, and

{vm}1_o, and {u,,} is assumed to be nonnegative and nonincreasing sequence, i.e., ug > u; >
p

“ Up—1 > Up > 0. Define o) := Z Um (0 < p < n), then summation

m=0

S 1= upvy + u1v1 + ugve + - - + upvy
satisfies the following inequalities:

min o u<S<(maXU)u.
<0§p§n p> 0=+ = No<psn */)70

Proof. S can be written in the following way:

S = wupoo +u1(o1 — 09) + tur(o2 —o1) + - - + up(on — on_1)

= O’O(UO - Ul) + 01(u1 - U2) + -+ opun.



Because each u;_1 —u; > 0 and u, > 0, we have

n
S = O'Q(ZLO — ul) + 01(u1 — 'LLQ) + -t opu, < (Oglﬁé(nap) z;(Uj_l — Uj).
‘7:

We get the estimate from above. From below, we can do the same way. O

Theorem 1.2 (Bonnet’s Theorem : 7> XDEHE). Let f be a Reimann integrable function
defined on finite interval [a, b], and ¢ be a nonnegative and nonincreasing function. Then, there

exists £ € [a, b] such that
b 3
| v@ i@ dr=pta+0) [ sa)ds

Proof. Without loss of generality, we can assume ¢(a) = p(a + 0). Divide [a, b] into n equal
subintervals and their nodal points are

a=xp <11 <Tog < -+ <xp =0.
Put
b—a

n

h=x—x;_1=
By Abel’s inequality, (we apply with u; = f(z;) and v; = ¢(z;)) there exist k, k' such that

K N— k

p(a+0)hY_ f(z) <h Z f(@i) <pla+0)h Y fli). (1.1)

=0 =0 =0

By the definition of Reimann integration, i.e. lim, o0 h Y 1 o f(z;) = ff f(x) dx,
For any € > 0, there exits h such that

k' ¢
h ;) < max / r)dr + ¢
> s <mps [ 1@
hold. Selecting h smaller enough, and (1.1), we get

(p(a—i—O)[mgin/jf(x)dx—s} S/abcp(:c)f(x)d:rg(p(a—l—O)[m?X/jf(x)dx—i—s .

3
By arbitral choice of € > 0 and continuity of / f(x) dz with respect to £ we get the theorem. [
a

Remark 1.1. If we assume ¢ is positive and nondecreasing function, then there exists £ € [a, b]

such that )
/a (@) f(z)dz = o / fa

Here we introduce so called Riemann-Lebesgue theorem.

holds.

Theorem 1.3 (Riemann-Lebesgue). For (t) € L'([a,b]), the following holds:

b
/ Y(t)sinntdt — 0 as n — oo.
a



Note. We can generalize this in the following: Let A be a real paremeter, if 1)(t) € L' ((—o0, o)),
thus,

/ P(t)sin At dt -0 as A — oo.

k
Proof. We divide [a, b] with (’sin” wave) nodal points, el (k=0,%£1,+£2,...), and decomposit
the integral into

2p+1ﬂ_

(L L[

p

2
where a + § is the first sin’s nodal point (i.e.—pw ) starting from a and b — ¢’ is a last nodal
n

2
points to b. Now, 6,0 < —p7r, thus § and ¢’ are approaching to 0 when n — oo. Since ¥(t) is

n
summable, the latter two terms of above approaching to 0 when n — oo.

If we put ¢t — T — ¢ in the second integral of above, we have sinnt = sinn(t/ + E) = —sinnt’.
Thus the sum 07% the first term and second term will be "
2ptl o
Z/ ! [w(t) - ¢(t + E)] sin nt dt.
p "

We can estimate from above by

b

(t + )} sinntdt’ < (t) — z/z(t+ E)‘dt. (1.2)
n
Since 1 (t) is summable, by Lebesgue’s theorem,
we have )
/ |t +h)—((t)|dt -0 as h—0,
and the right hand side of the inequality (1.2) tends to 0 when n — oo. O

We here just mention about Lebesgue’s theorem.

Theorem 1.4 (Lebesgue). For ¢(t) € LP([a,b]), p > 1, then the following holds:

b
/ |t +h) —t)|Pdt -0 as h — 0.

2 Jordan-Lebesgue

Theorem 2.1 (Jordan-Lebesgue). Let f € Ll (R) be a 2r-periodic function and f is

bounded variation near x, and put

n

Sp(x) := —ap + Z (@ cosmz + by, sinmax)

then the following holds:




Proof. By the definition of S, (by changing Fourier coefficient into integral form),
1 a+27

n:% N
1 n
+WZ[cosm1:/a
m=1

a+2m n
= / 1(6) [% + Z cosm(z — 9)} df (- addition theorem (fIJEEHE) ).
@ m=1

™

£(60) do

a2 a+2mw

f(0) cosmb df + sin mz / f(0) sinmb do

[0}

Again, we use addition theorem for trigonometric function,
2cos2ptsint = sin(2p + 1)t — sin(2p — 1)t

adding both side of above,

m m
Z 2cos2ptsint = Z (sin(2p + 1)t —sin(2p — 1)t>
p=1 p=1

= sin(2m + 1)t — sint.

Dividing both side by 2sin ¢, we have,

> cos2pt = (2.1)

Put t = ”’;9 in above equation, we have

-0
1 sin(2m + 1) L
§+Zcosp(m—0): g
p=1 2sin
Thus, we have
. T — 60
1 [atom sin(2n + 1)
Sn:ﬂ_L f(9) pe—" de.

2sin

Here put 6 = x + 2t and change integral variable § — ¢, then

1 [Pt in(2n + 1
g -1 / flo+onin@r Dt
B

s sint
0
Since « can be chosen arbitrary, thus so is 8. Put = —7 and divide integral domain into /
—3
and / ’ and change t — —t then we have
0
2 sin(2n + 1)t
Sn:/ (Sirlt)[f(x+2t)+f(x—2t)] dt. (2.2)
0

From (2.1),

/’5 sin(2n + 1)t P
0 2sint 4



we have

(2.2) becomes

2 sin(2n 4 1)t

e @20+ S 20 = 2f (@) dt.

Here we put .
Pt) = < [f(a+20) + [0~ 26) ~ 2f(a),

then .
Al ~ @) = [ 2t Dy ar

Now we want to show the right hand side of above tend to 0 when n — oo. For this, we divide

integral area into

’ w@(ﬂ dt + /72r WQQ(Q dt. (2'3)
)

S — S = [ T t

In the second term, since @ is summable, by Reimann-Lebesgue’s theorem, thus it goes to 0

when n — oo.
On the other hand, for the first term, f(z) is bounded variation in the neighbourhood of

x =z, both f(x 4+ 0) and f(z — 0) exits. So, we change value

fla+0)+ fz—0)

fla) = :

We shall show when ¢ | 0 the first term of (2.3) becomes smaller independently of m.
From the assumption, the following facts hold.

(i) ¢(t) is a BV(bounded variation) function in [0, ¢]
(if) lim o(t) = 0.
(Remark: Definition) f(x) is a function of bounded variation is iff its tatal variation,
V(f):=sup > [f(ir1) — f ()]
PeP 2y

becomes finete. Here, P is a set of intervals P whose nodal points are zg, z1, ..., Tn, -
If we put ¢(0) = 0, so ¢(t) bocomes continuous at ¢ = 0. On the other hand, BV functions

are docomposit into
p(t) = p(t) —n(t)
where p(t) and n(t) are [0,¢] positive variation and negative variation respectively. Here,
t t -di ing functi d li t)=1li t)=0.
p(t),n(t) are non-dicreasing functions an t—1>I£0p( ) t_lgrlon( )
By using Bonnet’s inequality, (Theorem 1.2), we have

% sin(2n + 1 % sin(2n + 1
5= | Wp@)dt:p(a)/& Wty p<e<a)

5



and

0 o (2n+1)5 ;
/ sin(2n + 1)t g — / sint b
3 t (2n+1)¢

Here we recall well known fact,

/%O LY (2.4)
, 2

sinz . : . : . .
is not integrable, i.e. in the sense of Lebesgue, it is not integrable.

Since absolute value of
T

_sinx L.

o dz and its limit when o — 0.

We can get the value of integral by using F(«) := / e
0 X

By (2.4), there exists positive number A, such that for any h > 0,
h -
t
’ / e dt’ <A
0 t

holds. Then we have
| Js] < 24 p(9).

Therefore, we have

% sin(2n
’/o Ww(t) dt| < 2A[p(6) + n(0)] (25)

= 2A X total variation [¢].
0<t<6$

Since ¢(t) is continuous at ¢t = 0, totalozagation [¢] is approaching zero accoding to 6.
<t<

Combining above and Riemann-Lebesgue’s theorem,

/g sin(2n + 1)t
0

; e(t)dt -0 (n— o0).

On the other hand, we have

6 .
2n+ 1)t —
‘/ wg@(t) dt| < 2A x total variation [p] — 0
; 7 0<t<o

Thus we got

[ +0) + [z —0)

Sp — f(z) = 5

We will show that the convergence is uninform with respect to z. Let = € [o/,5] be a
parameter, and instead using ¢(t) we shall use

plt;2) = [ (w +20) + S — 20) — 2f(2)]

S1n

and above argument can be done independent of x.



3 Heat equation

In this section, we will consider meaning of solution for 1 dimensional heat equation by use of
Fourier series. We consider the following heat equation:

0 0?
=

oy 5.2 (z,t) € Q x (0,00) (3.1)

where Q = (0, 7).
Boundary conditions and initial condition are the following:

uw(0,t) = g1(t), wu(m t)=g2(t), (0<t<+00), (3.2)
u(z,0) = f(x), z€l. (3.3)

For the sake of simplicity, here we assume

0.

g1(t) = ga(?)

Moreover f(z) satisfies f(0) = f(m) = 0 (so called compatibility condition) and f € C°(£2) N
BV (Q).

At first, we consider the expansion of f. Fot this purpose at x € [—m, 0], we put f(z) =
—f(—x). Then the domain f(x) can be considered [—7,x]. In this interval f(z) is odd function

so the Fourier series constructed just by sinnx, n =1,2,3---, i.e.
o0
flx) = Z cp Sinn.
n=1

Note that f is continuous and bounded variation thus the right hand side converges uniformly
in 2.
The following formula is a formal solution to the heat equation:

[e.e]
u(z, t) = Z e "¢, sinna. (3.4)
n=1

We will show (3.4) is the analitical solution.
(Sketch of the proof) At first, we will show the series in (3.4) converges pointwisely in

x (0,00). It is easy to see
2 s
cn:/ f(x)sinnxdx — 0 (n— o0).
T Jo

By Riemann-Lebesgue’s theorem, |c,| < M (n=1,2,---), moreover, 3 e " < 400, it is easy
to see the series is convergent when t > 0.

We will show u(x,t) is C* function with respect to (z,t) in ¢ > 0. For this, we calculate
derivative by x formally each term:

o0
2
Z nepe” ™ tsinna (3.5)
n=1



and taking absolute value of each term, it can be estimated like

o
Z e_"Qtn\cn| < MZTL@‘”275 < +00
n=1

Thus (3.5) converges uniformly, and then the formal derivative by each term is correct. Thus,

g ne ™ te, cosnz.

in the same way,
= E 7’L € —n’ C sin nx.
n
8.’1?2

Here we consider derivative by t. Choose § (> 0) aribitrary and fixed. At § <t < oo, we consider
formal derivative of u(x,t) by ¢:

E n?e " t]cnsmnx] <M E nZe " < too

can be estimated from above. Thus derivative by t converges uniformly then it is correct.
Then,

g n2e " te, sinn.

Therefore, u(z, t) is a solution to the heat equation at ¢ > 0. In the same way, at t > 0, it is
C*.
Next, we consider the behavior of the solution when ¢ — +0. Actually,

u(z, t) — f(z)

uniformly by z. Note that the Fourier series Y ¢, sin nx %’ converges uniformly and {e_"Qt}n:Lz,,,,
is positive decreasing. Applying Abel’s inequality, for arbitral e, there exists N such that

Z e "le, sinnz| < e, (t>0) (3.6)
n=N+1

holds. We will consider more cafully in this treatment. Since {e‘”zt}n:1,27,,, is positive nonin-
creasing seaquence, by Abel’s inequality (Theorem 1.1), put

U, =€ ", v, = cpsinn.

Applying Abel’s inequality, Z e”thn sinnx can be estimated from above
n=N+1

< max e te, sinnz.

N<p<oo

On the other hand, from below

min E e te, sinnz.
N<p<oo



Then there exists pg such that,
[ee} Ppo

| 32 e Mensinna| <[t 3 cusinnal

e cpsinnx| < |e Cn Sinnx
n=N+1 n=N

Po
< ‘ Z Cp, SIn nx‘
n=N

holds. On the other hand, ¢, sinnz converges uniformly, for sufficient large IV,

oo
_n? .
g e " tcnsmmc’ < E.

n=N+1
Therefore, (3.6) holds.
As a consquence,
N 2 > 2
u(z,t) — f(z)] < e "t — 1)e, sinnzx| + e "le, sinnx
lu(z,t) — f(z)| >
n=1 n=N-+1

(o, ¢]
+’ E Cp, Sin na:‘
n=N-+1

last two terms are less than 2¢ independent of ¢, and the first term approaches to 0 when ¢t — +0.

(QED).

4 Orthgonal system in L*(Q)

In this section we will consider Fourier series in wider point of view.

Let © be an opne set in RY. (It is OK if Q2 = RV.)

Let L?(Q) be a set of complex valued function defined on €2, wiht square summable. In other
word,the functions above are defined in = (z1,...,25) € Q and complex valued mesurable

functions with

/ ()2 d < oo
Q

We call above set L?(£2) whose norm is

iz = ( [ 15 de)

If the functions f and g are coincied with each other in a.e. in €2, we consider f and g are the
same element in L2

It is well known L?(Q)) is complete Riesz-Fischer’s theorem).

Tbb, {fu} 2 L3(Q) @ Cauchy 4

| fr — meLQ(Q) -0 (n,m — o0)

molX, fe L?(Q) BEELT, || fn — fllz2@) — 0 (n,m — o0) NI A/RVASH
We will introduce several terminology.



Definition 4.1 (Orthonormal system). We call the function series {¢,} in L?(Q2) is a or-
thonormal system, if it satisfies in the following two conditions:

(0S1) {p,} are orthogonal each other, i.e.

/ on(@)om(@ dz =0 (n £ m),
Q

(0S2)
/Q lon(z)Pdz =1 (n=1,2,..)

Definition 4.2 ((Complete orthonormal system)). We call an orthonormal system {¢,,}
in L%(Q) is complete when for all f € L?(€), the following condition holds:

/ f@)op(x)de =0 (Vn=1,2,..) & f=0ae Q.
Q

Here we consider Fourier expansion using orthonormal system. If {¢,} is orthonormal system,
we consider the following Fourier expansion of f € L?(Q):

f(z) ~ cro1(x) + copa(x) + -+ - + cnipn(z) + - - (4.1)

Cn ::/f(m)gpn(x)dac. (4.2)
Q

We call ¢,, Fourier coefficient.
Note that the right hand side of (4.1) is convergent sequence in L?(£2). Actually,

02 [ 176 =S ewnto e = [ [6) =3 eseo)] [ - o]
-/ o d + 3 el /| o) do =3 /| Fiatds =3 e | T da
= [P =3 e

therefore,

—mC".%'QCC: (If2$—mC‘2. .
/Q!f(:c) > (o /Qlf( e =3 e (4.3)

Thus we have Z |cil> < 0o and
i=1

D el < / |f(x)]*dz (Bessel’s inequality). (4.4)
i=1 Q

hold. By Riesz-Fischer’s theorem, we have the exsistense of

m—+00 4

¢ = lim ZCi%‘ in L2(Q). (4.5)
=1

10



(") If we put

m

Z 01991

i=1

then, for m’ > m,
[ @) = fur@)Pdo = 3P 50 s o0
@ i=1

and we can apply Riesz-Fischer’s theorem.

We will show ¢, Fourier series of f coincide.

At first Fourier expansion of ¢ € L? coincide with ¢ itself. Actually, since {¢;} is orthogonal
System,

| eavent@ias = | ( n}gnmgcm )l dz = mlgnooZ@ | oionta

here we exchanged summation and integration by Cauchy-Schwarz’s inequality.
Therefore,

/Q (@) — p@)pn@dz =0 (n=1,2,-").

If {¢on(z)} is complete, f = .
Then from (4.3),

Z\ciP:/ |f(z)|?dz  (Parseval D% X) (4.6)
i=1 @

hold.

On the other hand, if (4.6) hold, then recalling (4.3), we see f = .

We will also consider the case that {(;} is not complete. In this case, there exist f € L?(€),
f # 0, such that it is perpendicular to any ¢;, i.e.,

/f(x)goi(x)dxzo (1=1,2,...)
Q

hold. We see Fourier coefficients of f are all 0, f’s Fourier expansion ¢ = 0, then f # ¢.

We can sum up above in the following theorem.
Theorem 4.3 (L? Fourier expansion). The followings are equivalent:
(i) An orthonormal system ¢, is complete in L?(2).
(ii) For all f € L?(2), Parseval’s inequality (4.6) holds.
(iii) For any f € L?(Q2), f’s Fourier expansion coincide with f itself.

So far, we have considered the feature of f’s Fourier expansion. Here we consider on the
oposite way. Let {y;} be an complete orthonormal system, then for any complex sequence

(¢) = {¢;} with

11



> el < o0, (4.7)
=1

define f by
f(x) = cl‘pl(m) + 02902(55) +ot cn@n(x) e
The right hand side is defined in L?-limit. In this case, f’s Fourier series coincide with the right

hand side of above.
Here we consider (c) satisfying (4.7). We write £2 the set of (c¢) with norm

M= (S le)’

Then, f’s Fourier expansion defines an isometric mapping from L?(Q) into ¢? by Parseval’s
inequality.

At the end of this secion, we remark the feature of orthonormal system, {¢,}. Let {¢,} be a
complete orthonormal system, then
(1) If function series ) ¢, in the open set U in € converges uniformly, and f and each ¢,, are
continuous in U, then

chgon (xel)

n=1
holds.
(2) Even if a function series Y ¢, is not converges uniformly, the following:

o0

S leallin(@)] < o0

n=1

hold on almost every U, and if ® satisfying

Z\cnugon )| < ®(x), /Uq><x>2dx<oo

exists, then

00
Z CnSDn

n=1
hold almost every z in U.
Example
The trigonometric system {1, cosz,sinx, - - - ,cos nz, sinnx, - - - } on (0, 27) is complete in L?(0, 27).

Let f be a 27 periodic function in C*, then Fourier coefficients satisfy the following relation

2w 1 2m 7Tb/
Ty = f(x)cosnxdxr = —— f'(z)sinnz dr = ——2,
0 nJo n
. : may,
by, = f(x)sinnxdx = — f'(z)cosnxdr =
0 nJo n

where, (al,,b),) are Fourier coefficients of f.

12



Thus we have f’s Fourier expansion converges uniformly. Actually,

00 00 1 e 1 1 o 1

2 2
S laul + 1ol < 3 ~anl + 10D < (30 —5) (230 lanl? + 642)
n=1 n n n=1

=1 =1

hold and the right hand side is finete by Bessel’s inequality. Then the right hand side is finite
and is a convergence..

Therefore, Fourier series of f converges uniformly to f itself.

5 Fourier’s integration formula

5.1 Fourier expansion in bounded interval

So far, we have considered Fourier expansion of 2-7 periodic function. The question arouse,
for the functions which have no periodicity, can we consider Fourier expansion?

Let f € L'(R) be a function without period, but consider that it has ‘co’ periodic function.

Let us consider Fourier expansion of periodic function defined in (—¢,¢). It can be

f(z) ~ % + g(an cos %ZL‘ + by sin n%x)

where,

1 /[t 1 [t nm 1 [t . onm
wi=7 [ 10 a=g [ f@ws Tede b= [ s Te e

The purpose of this is to extend this to co-perodic functions. We first, consider the behavior
of expansion when ¢ — oo.

Note that ag — 0, otherwise series can not be integrable. Using addtion theorem of trigono-
metric function, we can calculate in the following way(we exchage summation and integration
formally):

[e.e]

Z(ancos %a}ﬁLbnsin %x) = i % /if(f) Ccos %(w —&)d¢
n=1 -

n=1

T nw
where, Av : = — v, == —
) E? n

If £ — oo then, Av — 0 and the definition of Riemann integral (precisely it is improper
integral.), we have

ZAZ/COS Un(x — &) — /OO cosv(x — &) dv.
n=1 0

13



Thus,
> nmw nm 1 [ o
ao+;(ancos€m+bnsin£x) —>/ f(ﬁ)/ cosv(x — &) dvdg

T J) oo 0
:71r/000 dy/_Zf(f)cosy(:L‘—f)df-

We have formally, . .
7 f(x) :/0 dl//_ f(&) cosv(x — &) dE. (5.1)

By above condideration, we can define Fourier transform as a limit of the Fourier series. In
the next section, we will discuss precise mathematical treatment.

5.2 Fourier’s integralation formula

In this subsection, we will treat above formula precisely. As we have already shown in the

previous sections,

Tz —0

a+2r sin(2n + 1)

-0
QSin$

Recall that f was 27-periodic function. We will change this formula using, Z DX % FH Z#1 2 T
AD.

-0 -0 -0
sin(2n + 1)56 = sinn(z — 6) cos a + cosn(x — 0) sin i 5
we have,
a2 —0de 1 a+2T
wSh :/ f(@)sinn(a:—@)cotx 5 2+2/ f(8)cosn(z —6)db.

The second term of the right converges to zero when n — oo by Riemann-Lebesgue’s theorem.
Therefore, (if we assume that f is bounded variation in the neighbourhood of § = x, the first
term is

at2m r—0d0 7

nlg]go f(0)sinn(z — ) cot 5 §[f(x+0)+f(3:—0)].

In above relation, instead f(6), we use

e I CRERUCE)

0, otherwise,

then, ¢ is bounded variation near § = x and ¢(x +0) = f(x £+ 0), by Riemann-Lebesgue’s
theorem, we got

lim /OHr27r 1) sinn(z — 0)df = g[f(x +0) + f(z —0)]. (5.2)

n—00 x—60

14



1: Relation between f and ¢

Here we change the feature of f. So far, f was 2m-periodic function, here we ommit the
assumption, and let

+o0
/ 1£(0)]d6 < oo.

Again, we assume, f is bounded variation in arbitral finite interval, thus, for any x, with
a <z < a+2m, (5.2) hold and both

/a /©) sinn(z — 6)do, /OO = sinn(x — 6)do,

x—0 torx—0

are converges to zero when n — oo by Riemann-Lebesgue’s theorem.
Conbining above facts, we have

Theorem 5.1 (Fourier’s formula). Let, f € LL (R), VI CC R, f € BV(I). Then 2D & ¥,

loc

nl;ngo/z :1{(—9)9 sinn(z —60)df = g[f(a:—l—O) + f(z —0)].

hold.

We will change formula in above, put

F, := /Z :Z(—e)ﬂ sinn(x — 0) do

and using i "
sinn(z —

p—" :/0 cosv(x — 0)dv

F, = /(: d9/0nf(9)cos1/(:1:—9)d1/.

Here we use Fubini’s theorem, we got

we have

F, = / du/ f(@) cosv(x —6)db.
0 —0
By above we have the following:

15



Theorem 5.2 (Fourier’s integralatin formula). Assume as above,

s

A 00
lim /0 dy/oof(ﬁ)cosy(x—G)dH 2[f(w+0)+f(x—0)]. (5.3)

A—o0

holds.
Note that this is same as (5.1). Moreover (5.3) is the same as Fourier’s inverse transfom.

6 Fourier transform

In this section, we will define Fourier transform and discuss its feature.

For the Fourier transform, we already got its invers transformation by (5.3).

We will introduce complex valued expression, since it is used in the standard formula.

Up to now, f was assumed to be real fucntions, but almost all arguments holds for complex

valude functions. Acutually, just divide into

f=f+if

real and imaginary part. If |f| is ummable, automatically fi, fo are summable, and oppsit is
also holds. BV is also the same.

From now on, let f be a complex valued function. For the sake of simplicity, in above (5.3),
substitute v into 27, by addition formula of trigonometric functions,, we have

[f(z+0) + f(z - 0)], (6.1)

N |

A—00

A
lim 2/ [C(v) cos2mvx + S(v) sin 2nvz| dv =
0

where, . o
Cv) = / f(@)cos2mvbdl, S(v)= / f(0)sin 2710 db.

The equality (6.1) is the same as subustitution of integer n in cos 2wnx, sin 27rnx in Fourier
series into real parameter.

We assumed v > 0, but actually it has meaning when v < 0, we have

Taking care of above, (6.1) can be written in the following:
A

%(f(:n +0)+ f(z—0)) = Alim [C(v) cos 2mva + S(v) sin 2nvz| dv. (6.2)
—o0 J_4

We define for f, f,
fw) = / F(O)e™>m0 .
From Euler formula,
fv)=Cv) —iS(v).
therefore, in (6.2), C, S are even, odd fucntions respectively, we have,

A A
lim [C(V) _ is(y)]eQﬂ'iVl‘ dv = lim f(V)eQWiVx dv.

A—00 —A A—o0 —_A

Changing integral valuable, we get the following:.
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Theorem 6.1 (Fourier transform and inverse transform). Let f € L'(R) be BV in arbitral

bounded interval. Define

fo) = [ e (6.3)
(Fourier transform), we have
A
tim [ 27 f(€) de = L[f(x +0) + f(@ ~O) (6.4)
A—o0 —_A 2

holds. Especially, if f is summable and f is continuous, then (6.4), we can express

f(a) = / et fe) de (6.5)

—0oQ0

and it is called inverse transform.
Here we will introduce the definition of Fourier transform.

Definition 6.2 (Fourier transform). Let f € L'(R) be BV in any finite bounded domain.
We call

o0

f(6) = / &2 (1) du

—00

f is Fourier transform of f. Also, we call it Fourier image and write F f. Here, Ff = f .

Equalities (6.4) and (6.5) are called Inverse formula of Fourier transform.

The formula (6.4) is a little bit complicated, it comes from that f not ususally summable.
The following is its example.
Example 1. Consider function f, for A > 0,

1 if x| <A

flo) = 0 if |z| > A.

Then f’s Fourier transform f is

. A ) —2mixl 1 p=A in 2 A€
_ —omizt 5 _ [€ _ sin2r
1(€) /A € du [ —2mi€ ]z:—A T

This f is not summable.

We will introduce several expamples for Fourier transform.
2
Example 2. Here, we calculate Fourier transform f(x) = exp(—k;’). By the definition,

7(e) = /_ e () da = /  mita el

o0 en2 o0 en2
_ (z42mif)® 5 2.2 _9.-2¢2 _ (z+27ig)
:/ e 2 2”§dm:e2”§/ e 2 dx.

—00 —00

[e.e]
The integration / e~ (@+2mi€)?/2 g0 can be calculated the following manner.

—0o0
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Im(z)

—R R Re(z)

2: Integrate along I'g, Red line is {z =z + 27§ : —R <z < R}

—22/2

We introduce complex function e . The above integration can be calculated using complex

intergral. As in the graph of 2, integralte along red line, {z = x + 27§ : —R < x < R} and

taking limit R — oo.

—22/2

Since e is a analitic function on C, by the Cauchy’s integration theorem, we have

/ e /24y = 0.
I'r

On the other hand, the right hand side above integration will be divided into four lines, and

we have
R 2me -R 0
/ e 2 gy + / e~ (BH)*/2 gy, 4 / e~ (@+2mi&)?/2 g0 4 / e~ (CRT)*/2 g,
-R 0 R 2me
When R — oo, |e”(ERT®)*/2| < o(=R*+4*)/2 _y ( then, the second and forth term of the
integration converges to 0. Then we got,

By above arguement, we got

F(&) = Vame ¢,

Example 3. Let A > 0, then
1 ifo<e<A
flx)=< -1 if —A<z<0
0 if |z| > A.
Calculatef f’s Fourier transform:

R 0 ] A ) —2mix€ 4 z=0 e 2miré 1 p=A
— _ —2mixé d —2mix€ dr = — |:6 } |: ]
f(6) /A € * +/0 ¢ o “omie Joeea T 1 T2mig oo

1 271 AL —2miAE 1
=— = —i—.e = —(1 — cos 2mA¢).
mi€ 2mi€ mi€
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6.1 Feature of Fourier transform

Fact(a) f,f’ are both continuous and summable, Calculating integration by part of the
definition of Fourier transform, and considering f(z) — 0 when x — o0, we have

omi€ f(€) = / e (0 da, (6.6)
moreover, -
2L A O] < 1f 1l
holds.
In general, if fis C™ and f, f',..., f0™ are all summable,
FIF™) = (2mig)™ F(f], (6.7)
[2mi€|™ f(€) < 17l (6:8)
hold.

Roughly speaking, if the function and its derivative is summable, the regularity of f is pro-
protionate to the decay order of f at infinity.

Fact(b) Let |z||f| be summable,then

fo- [ e f ()

it is possible to taking derivative under integration, we have

f1) = / —2mixf(x)e 2™ d.
More generalm f and 2™ f m = 1,2,3,--- are summable then f is C™ functions and
am . o
dgimf(i) = Fl(—=2mizg)™ f], (6.9)
FE)] < l@m)™ fla (6.10)

hold.

This shows that if f’s decay order is faster at infinity, then existense of the higher order
derivative of f is guaranteed,

From the fact (a), f,f’,f"” are continuous and summable then f becomes summable, the
inverse transform holds in the sense of (6.5).

Fact(c) Equality F[f(z — h)] = e 2™h¢ f(£) hold.
Actually,

/oo e~ 2mE f (3 _ ) d — /00 e,zm'(erh)&f(x) dr = e*%rihﬁf(g)’

—00 — 00
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hold.
Here we discuss important equality about Foureir series and Parseval’s equality.
This is a special case of so called Plancherel’s theorem.

Lemma 6.1. Let f be C? function and f, f/, f" are all summable, then the following equality
holds:

/ @) = / NG (6.11)

—0 —0
Proof.
As we have discussed above, from assumption, f is summable and (6.4) hold.
Therefore

| Wera= [ f@f@da= [ty [ Feema
Since f, f € L', by Fubini’s theorem,
_ _Zf(g)dg /_ Z Fx)e 2t gy
RGN MIGIRE:

hold. O

If one just see the results of above lemma, it seems OK, if we assume only f € L%. But if the
assumption is just f € L2, f is not always summable, (Because the space is hole R, we can not
determine inclusion relation.), the Fourier transform f can not be defined by integration.

On the other hand, from the feature of Fourier transform, F studied above sections, it is an
isometric operator defined in dense subset of L2.

We can extend it to the isometric operator defined on whole L2.

Here we ommit the precise discussion. (This will be one of further work.)

Here we summarize the discussion in this section.

Theorem 6.3. Let f = f(z) and g = g(§) are summable, then
Ff:= / e 2™ £ (1) d,

Fg = / 2T g ) de

—0o0

and we call them Fourier transform and Inverse Fourier transform respectively.

Moreover, if f, g are C? and up to second derivative, they are summable, then

FFf=f (6.12)
FFg=g (6.13)

hold and
IFfllzz = 11fllzzs (1 Fgllzz = llgllLe- (6.14)
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Proof. We just should show (6.13). If ¢ is summable and
Fg-T5

hold and and thus we have

Applying (6.12,), we got

Appendix 1. Heat equation and Fourier transform

In this section, we consider how to solve the heat equation in R'.

Ut = Ugy In (z,t) € (—00,00) X (0,00)

u(z,0) = f(x)
Apply Fourier transform to the both side of above equation, then
d
left) =u; = —u
(left) = uy i
o0 .
(right) :/ e 2Ty da
— 00
S .
= (27ri§)2/ e 2Ty do
—o0
= (2mi€)*a.

If we write u(§,t) as a transformed function, then the heat equation will be

d
S (o 2~
7 (2mi&)“u

(e, 0) = f(8).

This became ordinary differential equation of . For every &, this is ture. We solve this equation,
then

o~

(&, 1) = (el = F(g)e e,

Apply inverse Fourier transform to above and allow to exchange integration order, then,

u(z,t) = / 6271'1'5906747.-26215 (/ 672m'y§f(y) dy) d¢

—00

= [ g [ ety

—00

2/_ f(y)e‘/“”?&(y —z)dy.

Recall,

— 1 22
—4m2€2¢ — _Z
e (2) \/mexp( 4t) (A.1)
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then

u(z,t) = /Z \/Z% exp(—w>f(y) dy.

Thus we got a solution.

Here, we prove the equation (A.1). For this purpose, apply the following theorem with chang-

ing a = 4mt.

. —raz?
Theorem. Fourier transform of f(x) = e ™" is

Fle) = at exp(-75).

a

Proof. By using change of variable, x — x/+/a, we should show just the case a = 1. Thus we

calculate
f(g) — / 6—2m§xe—7rx dx

—0oQ
D

:/ e—ﬂ($+i£)2€—7r£2 def
—Oo0

— /OO e~ (@ gy

—00

. : a2
Now, integration of e~

integral can be moved on Imz = 0. Then,

thus we have

Appendix 2. The fundamental solution

Here we consider the following partial differental equation.

oF

Here, §(x,t) = §(x)d(t). The meaning of above, we consider

/x 5(2)5(t)p(t) dt = 3(x) /OO 5(t)p(t) dt,

—00 —00

, if [Imz| bounded, by the Cauchy’s integration theorem, the line

something like above. Here, we racall, the distribution sense of derivative of Heaviside function

will be the Dirac’s delta function, 6. The Heaviside function is defined
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Note that the definition is sometimes different from books and papers, but the important thing
is that the origin it is discontinuous dispite the value of it. For any ¢ € C}(R),

/ H' (t)p(t)dt = / H(t)¢'(t)dt (. definiton of derivative)
=— / ¢/ (t)dt (.- definition of Heaviside)
0

=p(0) = /OO 0(t)p(t)dt (. definition of delta)

—00
Apply Fourier transform to (A.2) with respect to x, we have

4 B(e. 1)+ 4x°€ e, 1) = 5(0) (A3)

—_

Here, we used §(z) = 1. Then (A.3) can be considered to be the following ordinary differential

equation:
d
ZF(t) — aF(t) = §(b).
SE() - aF(t) = 5(1)
Put F(t) = e®G(t), then
dG

Thus, for any ¢ € C§°(—00,00), we see from
(e78(t), (1)) := / e () p(t) dt = e~ %p(0) = ¢(0),
e~ %4§(t) is coincide with §(¢). Then the equation is

dG
== ().

This means
G(t)y=H(t)+C,

where H is the Heaviside function and C'is a constant. Now, we choose initial data to be C' = 0,
we see F'(t) = e® H(t). From this we have
E(&,t) = H(t)e €.

Apply Fourier inverse transform, we have W2 #1112 X 0 |
1 z?
E(z,t) = H(t)(Ant)"2 exp(—g)
= H(t)K(x).

We call this is the fundamental solution to the heat equation.
Note.

u(z,t) =g+ E (convolution )

:/t /Rg(y,s)E(xy,ts)dyds

—00
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is a formal solution to

ou

Frie Au+ g(z,t).
Proof
(O = A)(g*E)=gx (0 —A)E
=gx*0
=g
AFEICDOWT
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