
1 Variational Problem

1.1 One dimensional case

Let Ω := (a, b) be an open interval. We consider a functional I, a map from

a function space to R, defined by

I(u) :=

∫
Ω

(
du

dx

)2

dx,

where u : Ω → R. Our goal is to find a minimizer of I in the set

K := {u ∈ C1(Ω) ∩ C0(Ω);u(a) = α, u(b) = β}. †

Definition 1.1. A function u ∈ K is a minimizer of I on K if it satisfies

inf
v∈K

I(v) = I(u).

Remark 1.1. Since I is nonnegative, it is bounded from below. Hence there

exists infimum of I by continuity of real numbers.

Definition 1.2. Let C∞
0 (Ω) be a set of smooth function whose support,

sptφ := {x ∈ R;φ(x) ̸= 0},

is compact and contained in Ω.

Proposition 1.1. Let φ ∈ C∞
0 (Ω). Then there exists ε0 > 0 such that φ(x) = 0

for any x ∈ {x ∈ Ω; dist(x, ∂Ω) < ε0}.

Example 1.1. A graph of φ ∈ C∞
0 (Ω) is shown in the below figure:

　 Let φ ∈ C∞
0 (Ω) and ε be a small number. We assume that u is a minimizer

of I in K. Since C1(Ω) ∩ C0(Ω) is a linear space and φ(x) = 0 for all x ∈ ∂Ω,

we obtain u+ εφ ∈ K. Then

I(u+ εφ) =

∫
Ω

(
d(u+ εφ)

dx

)2

dx

=

∫
Ω

(
du

dx

)2

dx+ 2ε

∫
Ω

du

dx

dφ

dx
dx+ ε2

∫
Ω

(
du

dx

)2

dx.
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Fig. 1: Graph of u and u+ εφ

The function ε 7→ I(u+ εφ) must have a local minimum at ε = 0. Moreover,

ε 7→ I(u+ εφ) is a differentiable function in ε. Hence we see that

d

dε
I(u+ εφ)

∣∣∣∣
ε=0

= 0. (1.1)

The left-hand side of (1.1) is called the first variation of I. We have by (1.1)

0 =
d

dε
I(u+ εφ)

∣∣∣∣
ε=0

=
d

dε

(∫
Ω

(
du

dx

)2

dx+ 2ε

∫
Ω

du

dx

dφ

dx
dx+ ε2

∫
Ω

(
dφ

dx

)2

dx

)∣∣∣∣∣
ε=0

= 2

∫
Ω

du

dx

dφ

dx
dx.

We rewrite the above equality as

−
∫
Ω

du

dx

dφ

dx
dx = 0 (∀φ ∈ C∞

0 (Ω)). (1.2)

　Additionally, we assume that u ∈ C2(Ω). From the integration by parts and

(1.2), we obtain∫
Ω

d2u

dx2
φdx =

[
du

dx
φ

]x=b

x=a

−
∫
Ω

du

dx

dφ

dx
dx = 0 (∀φ ∈ C∞

0 (Ω)).

Hence we have
d2u

dx2
= 0 in Ω. (1.3)

We call (1.2) the weak formulation of (1.3). (1.3) implies that u is a linear

function.

†In mathematical sense, function space should be {u ∈ W 1,2(Ω); with b.c.} so that a
minimizer of I exists where W 1,2 is a Sobolev space with u, uxi

∈ L2(Ω).
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1.2 Multi dimensional case

Let Ω ⊂ Rn be a domain and have a Lipschitz boundary. Similarly, we define

a functional

I(u) :=

∫
Ω

|∇u|2dx,

and a function set

K := {u ∈ C1(Ω) ∩ C0(Ω);u|∂Ω = g},

where ∇u :=
(

∂u
∂x1

, ∂u
∂x2

, · · · , ∂u
∂xn

)
, |∇u|2 := ∇u · ∇u and g is a given function.

If u is a minimizer of I in K, then u satisfies

−
∫
Ω

∇u∇φdx = 0 (∀φ ∈ C∞
0 (Ω)).

Moreover, if u ∈ C2(Ω), we obtain,

∆u = 0 in Ω

(
∆u :=

n∑
i=1

∂2u

∂x2
i

)
. (1.4)

1.3 Numerical calculation

The equation (1.4) is called Laplace’s equation. It is difficult for us to con-

sider multi-dimensional Laplace’s equation mathematically on arbitrary do-

main Ω. But the numerical calculation of this equation is not difficult.

First, let us consider it in the one-dimensional case:
d2u

dx2
= 0 in Ω := (0, 1)

u(0) = α, u(1) = β.

Let ∆x := 1/N (N ∈ N) and divide Ω into N intervals of equal length.
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In this situation, we use the finite difference approximation

d2u

dx2
(x) ≃ u(x+∆x)− 2u(x) + u(x−∆x)

(∆x)2
. (1.5)

If u ∈ C2(Ω), the quantity of (1.5) converges to d2u
dx2 as ∆x → 0.

ui+1 − 2ui + ui−1

(∆x)2
= 0 i = 1, 2, · · · , N − 1, (1.6)

where ui := u(i∆x) (i = 0, 1, · · · , N). We restrict the equation only on the

nodal points. We rewrite (1.6) as a system of linear equations of the form

Ax = b: 

2 −1 0 · · · · · · 0

−1 2 −1 0 · · · 0

0 −1 2 0 · · · 0
...

...

0 · · · 0 −1 2 −1

0 · · · 0 0 −1 2





u1

u2

u3

...

uN−2

uN−1


=



α

0

0
...

0

β


. (1.7)

From (1.6), for each i = 1, 2, · · · , N − 1,

ui+1 − 2ui + ui−1 = 0,

ui =
ui+1 + ui−1

2
.

Hence this formula shows (is the figure part of the sentence)

For each i = 1, 2, · · · , N − 1, ui is an average of ui+1 and ui−1. Usually, a

system of linear equations can be solved by using the Gaussian elimination

method. This method is simple, but it may cause some troubles in a special

case.

In equation (1.7), since A is a positive definite symmetric matrix, we obtain

that

Solve Ax = b ⇐⇒ Find the minimizer of f(x) :=
1

2
(x,Ax)− (b, x). (1.8)
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Definition 1.3. Matrix A is positive definite if all of its eigenvalues are posi-

tive.

Definition 1.4. Matrix A is a symmetric matrix if it satisfies A = At where

At denotes the transpose of A.

Hence, to solve (1.7), we consider a minimization problem for f . To simplify,

we assume α = β = 0 and N = 3. Then

f(x) = xr

(
2 −1

−1 2

)
x (x ∈ R2).

Problem. Choose C > 0 and plot the set {x; f(x) = C} for C = 1.

The Fig.2 is the level set of f . Let x0 ∈ RN−1 be an initial point of numerical

computation. Firstly, calculate the gradient of f(x) at x0. It is perpendicular

to the level set. Secondly, draw a line passing x0 with direction ∇f(x0) and

find a minimum point x1 on the line. We again calculate the gradient of f(x)

at x1. We repeat this procedure. It may take a long time to calculate in this

way. If A is an identity matrix, we can find the minimum in one iteration. We

Fig. 2: Level set of f

Fig. 3: Level set of f if A is an identity

matrix

expect that the convergence will be fast if A is similar to an identity matrix.
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Hence we find a matrix C ∼ A−1 and solve CAx = Cb. In the equation (1.7),

we should choose

C =


1

a1,1
0 · · · 0

0 1
a2,2

· · · 0
...

...
. . .

...

0 0 · · · 1
aN−1,N−1


But in other case, it isn’t easy to find such a matrix C.

1.4 Another way to derive the system of linear equa-

tions

The original problem is finding the minimizer of the functional

I(u) =

∫
Ω

(
du

dx

)2

dx (Ω := (0, 1)),

on the set

K := {v ∈ C1(Ω) ∩ C0(Ω); v(0) = α, v(1) = β},

Let ∆x := 1/N (N ∈ N) and divide Ω into N intervals of equal length. We

approximate the function u by a piecewise linear function:

Then we can calculate I of the approximating function, and introduce func-

tional Ĩ:

Ĩ((a1, a2, · · · , aN−1) =
N−1∑
i=1

(
ai+1 − ai

∆x

)2

∆x =
N−1∑
i=0

(ai+1 − ai)
2

∆x
. (1.9)

Ĩ will be the function f in (1.8) of the minimization problem.
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The graph of Ĩ is shown in the above figure. We can see that the graph is

quadratic. Hence, the partial derivative of Ĩ vanishes at a minimizer:

∂Ĩ

∂ai
= 0 i = 1, · · · , N − 1. (1.10)

Consequently we get

ai+1 − 2ai + ai−1 = 0 i = 1, · · · , N − 1. (1.11)

We can change the above to (1.7).

1.5 One dimensional Finite elements method

Let us consider the weak formula

−
∫
Ω

du

dx

dφ

dx
dx = 0 (∀φ ∈ C∞

0 (Ω)). (1.12)

We approximate u by using following base functions {φi}Ni as

u ≃
N∑
i=0

aiφi. (1.13)
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For each test function φj (j = 1, · · · , N − 1), we get from (1.12)

−
∫
Ω

d

dx

(
N∑
i=0

aiφi

)
dφj

dx
dx = 0.

In the numerical calculation, we do not need to require that φj belongs to

C∞
0 (Ω). Finally, we get

N∑
i=0

ai

∫
Ω

φ′
iφ

′
j dx = 0 j = 1, · · · , N − 1.

Forethermore, by using the formula

∫
Ω

φ′
iφ

′
j dx =


2
∆x

i = j

− 1
∆x

|i− j| = 1

0 |i− j| ≥ 2

(1.14)

we obtain (1.7).

1.6 Completeness of the Sobolev Space

We introduce a function space to prove the existence of a minimizer. Let

us confirm the definition of infimum. Let A ⊂ R be bounded from below. If

α ∈ R satisfies that

(i) α ≤ x (∀x ∈ A);

(ii) ∀ε > 0, ∃xε ∈ A s.t. α+ ε > xε,

we call α the infimum of A and write = inf A := α. By (ii), there exists

{xn}n∈N ⊂ A s.t.

xn ≥ xn+1 (∀n ∈ N), xn → α (n → ∞).

Similary, there exists {vn}n∈N ⊂ K s.t.

I(vn) ≥ I(vn+1) (∀n ∈ N), lim
n→∞

I(vn) = inf
v∈K

I(v).

It is important to note that the sequence {vn}n∈N ⊂ K may not converge to a

function v belonging to K.
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Example For each n ∈ N, we define fn : [0, 1] → R as follows

fn(x) :=


2n2x if x ∈ [0, 1/(2n)),

−2n2x+ 2n if x ∈ [1/(2n), 1/n),

0 otherwise.

The graph of fn is shown below.

{fn}n∈N is a pointwise convergent function sequence. Pointwise means that for

each x ∈ Ω, there exists fx ∈ R such that

fn(x) → fx (n → ∞).

In this case, for each x ∈ Ω, we define

f(x) := lim
n→∞

fn(x) = 0.

Also, calculating the integra of fn, we see that

lim
n→∞

∫
Ω

fn(x)dx =
1

2
̸=
∫
Ω

f(x)dx.

On the other hand, if {fn}n∈N is a uniformly convergent function sequence, it

is possible to exchange the limit and the integral. Uniform convergence means

that there exists a function f : Ω → R such that

sup
x∈Ω

|fn(x)− f(x)| → 0 (n → ∞).

Then we have∣∣∣∣∫
Ω

fn(x)dx−
∫
Ω

f(x)dx

∣∣∣∣ ≤
∫
Ω

|fn(x)− f(x)|dx

≤
∫
Ω

sup
x̃∈Ω

|fn(x̃)− f(x̃)|dx

= sup
x∈Ω

|fn(x)− f(x)||Ω|

→ 0 (n → ∞).
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Hence

lim
n→∞

∫
Ω

fn(x)dx =

∫
Ω

f(x)dx.

We define the function space

L2(Ω) :=

{
f ∈ measurable;

∫
Ω

f(x)2dx < ∞
}
.

L2(Ω) is a linear space, and we define the L2 inner product and the L2 norm

(f, g) :=

∫
Ω

f(x) · g(x)dx, ∥f∥L2(Ω) :=
√

(f, f) (f, g ∈ L2(Ω)).

Then L2(Ω) is a Banach space with the above norm.

Definition 1.5. (weak derivative) For a function u ∈ L1
loc defined by

L1
loc(Ω) :=

{
f ∈ measurable; ∀K ⋐ Ω,

∫
K

|f(x)|dx < ∞
}
,

there exists a function v ∈ L1
loc such that∫

Ω

∂

∂xi

φ(x)u(x)dx = −
∫
Ω

φ(x)v(x)dx (∀φ ∈ C∞
0 (Ω)). (1.15)

We call v the weak derivative of u, and we write ∂u/∂xi := v.

If u is a differentiable function, we obtain (1.15) from the integration by

parts. Thus u has a weak derivative. We define the Sobolev space W 1,2.

Definition 1.6. We define the Sobolev space

W 1,2(Ω) :=
{
f ∈ measurable; f ∈ L2(Ω), fxi

∈ L2(Ω) (i = 1, 2, · · · , N)
}
,

where fxi
is a weak derivative of f . Sometimes we write H1(Ω) as W 1,2(Ω).

Let us show that W 1,2(Ω) equipped with the norm

⟨f, g⟩ :=
∫
Ω

(f · g +∇f · ∇g)dx, ∥f∥W 1,2(Ω) :=
√
⟨f, f⟩ (f, g ∈ W 1,2(Ω)),

is a Banach space. Let {fn}n∈N ⊂ L2(Ω) be a Cauchy sequence. From the

definition of Cauchy sequence,

∥fn − fm∥W 1,2(Ω) → 0 (n,m → ∞).

Then

∥fn − fm∥L2(Ω) ≤ ∥fn − fm∥W 1,2(Ω) → 0
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∥∥∥∥∂fn∂xi

− ∂fm
∂xi

∥∥∥∥
L2(Ω)

≤ ∥fn − fm∥W 1,2(Ω) → 0 i = 1, · · · , N

as n and m to ∞. Therefore {fn}n∈N and {∂fn/∂xi}n∈N is a Cauchy sequence

on L2(Ω). From the completeness of L2(Ω), there exists f, vi ∈ L2(Ω) such

that

fn → f,
∂fn
∂xi

→ vi in L2(Ω) (n → ∞).

Then we have from the Cauchy-Schwarz inequality,∣∣∣∣∫
Ω

∂

∂xi

φ(x)fn(x)dx−
∫
Ω

∂

∂xi

φ(x)f(x)dx

∣∣∣∣ ≤
∫
Ω

∣∣∣∣ ∂

∂xi

φ(x)

∣∣∣∣ |fn(x)− f(x)|dx

≤
∥∥∥∥ ∂φ∂xi

∥∥∥∥
L2(Ω)

∥fn − f∥L2(Ω)

→ 0 (n → ∞).

Hence,

lim
n→∞

∫
Ω

∂

∂xi

φ(x)fn(x)dx =

∫
Ω

∂

∂xi

φ(x)f(x)dx.

Similary, we obtain

lim
n→∞

∫
Ω

φ(x)
∂

∂xi

fn(x)dx =

∫
Ω

φ(x)vi(x)dx.

Thu vi is a weak derivative of f . From the above, W 1,2(Ω) is a Banach space.

Example 1.2. Let f : (0, 1) → R be a function definded by

f(x) :=

{
1 x ∈ (0, 1/2)

0 x ∈ [1/2, 1)

f is not weakly differentiable.

Proof. We assume that f is weakly differentiable. Hence there exists g ∈
L1

loc(0, 1) such that∫ 1

0

∂

∂x
φ(x)f(x) dx = −

∫ 1

0

φ(x)g(x) dx (∀φ ∈ C∞
0 (0, 1)). (1.16)
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We calculate the left-hand side of (1.16)∫ 1

0

∂

∂x
φ(x)f(x) dx =

∫ 1/2

0

∂

∂x
φ(x) dx = φ

(
1

2

)
.

Therefore we have g ≡ 0 in (0, 1) \ {1/2}. But this is a contradiction. □

1.7 Hilbert Space

Definition 1.7. A Hilbert space H is a vector space endowed with an inner

product ⟨·, ·⟩ that is complete in the associated norm ∥ · ∥ =
√
⟨·, ·⟩.

Clearly, a Hilbert space H is also a Banach space.

Definition 1.8. Let {un} ⊂ H and u ∈ H. {un} is said to converge weakly

u ∈ H (un ⇀ u) if

⟨un, φ⟩ → ⟨u, φ⟩

as n → ∞, for each φ ∈ H.

Let X be a Banach space with a norm ∥ · ∥X , and X∗ be set of bounded

linear functionals on X. From the definition, f ∈ X∗ satisfies

f(αu+ βv) = αf(u) + βf(v) u, v ∈ X, α, β ∈ R,

and there exists M > 0 such that

|f(u)| ≤ M∥u∥X ∀u ∈ X.

Then we can show that f is continuous. Indeed, for each {un} ⊂ X; un →
u in X,

|f(un)− f(u)| = |f(un − u)| ≤ M∥un − u∥ → 0.

We can define norm for X∗.

Definition 1.9. Let X be a Banach space and X∗ be the set of bounded linear

functionals on X. Then we define the norm on X∗ as

∥f∥X∗ := sup
u∈X,∥u∥X=1

|f(u)|.

X∗ is called the dual space of X.

Obviously, X∗ is also a Banach space. Similarly, we can define X∗∗ as the

set of bounded linear functionals on X∗.
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Proposition 1.2. Let X be a Banach space and X∗∗ be the dual space of X∗

where X∗ is the dual space of X. Then X∗∗ ⊃ X.

Proof. Let u ∈ X and we can define u : X∗ → R,

u(f) := f(u) (∀f ∈ X∗)

Then we have that u is a linear functional of X∗ and

|u(f)| ≤ M∥u∥X ≤ ∥u∥X∥f∥X∗ (∀f ∈ X∗)

Hence u ∈ X∗∗. □

Definition 1.10. Let X be a Banach space. If X∗∗ = X, then we call X a

reflexive Banach space.

Definition 1.11. Let X be a Banach space. X is called separable if there exists

{φi} ⊂ X such that {φi} = X where A is the closure of A in X.

Theorem 1.1. Let X be a separable Hilbert space and {fn} ⊂ X∗. We assume

that {fn} is bounded, i.e., there exists M > 0 such that ∥fn∥X∗ ≤ M (∀n ∈ N).
Then there exists a subsequence {fnj

}j, f ∈ X∗ such that

fnj

∗−→ f (j → ∞).

(i.e. fnj
(φ) → f(φ) for all φ ∈ X).

Proof Since X is separable, there exists {φi} ⊂ X such that {φi} = X. Then

we get

|fn(φ1)| ≤ ∥fn∥X∗∥φ1∥X ≤ M∥φ1∥X (∀n ∈ N),

hence there exists a subsequence {f1,n(φ1)}n, α1 ∈ R such that

lim
n→∞

f1,n(φ1) = α1.

Similarly, we can see that there exists a subsequence {f2,n(φ2)}n, α2 ∈ R such

that

lim
n→∞

f2,n(φ2) = α2.

We write {fnj
}j as {fn,n}. Then {fnj

}j satisfies that

fnj
(φi) → αi =: f̃(φi) (j → ∞)

for each i ∈ N. Since {φi} = X, for each φ ∈ X, there exists {φ̃i} ⊂ {φi} such

that φ̃i → φ in X (i → ∞). We define f(φ) := limi→∞ f̃(φ̃i). Then f ∈ X∗.

□
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Theorem 1.2. (Riesz representation) Let H be a Hilbert space and f ∈ H∗.

Then there exists a unique v ∈ H such that

f(u) = ⟨v, u⟩ (∀u ∈ H).

Proof. First, we consider the finite dimensional case, H = Rn. Then f :

Rn → R is a linear function and ⟨u, v⟩ = u · v (∀u, v ∈ Rn). We can rewrite

the function f as a inner product. Next, we consider the infinite dimensional

case. We define

ker(f) := {u ∈ H; f(u) = 0}.

Since f is a linear, ker(f) is a linear subset and a closed set. In fact,

f(αu+ βv) = αf(u) + βf(v) = 0

for each u, v ∈ ker(f), α, β ∈ R, and for {un} ⊂ ker(f); un → u0,

0 = lim
n→∞

f(un) = f
(
lim
n→∞

un

)
= f(u0),

thus u0 ∈ ker(f). Therefore, we get

H = ker(f)⊕ ker(f)⊥, (1.17)

In other words, for u ∈ H, there exsist a unique u1 ∈ ker(f) and u2 ∈ ker(f)⊥

such that u = u1 + u2. Let u
⊥ ∈ ker(f)⊥, and we define

v :=
f(u⊥)u⊥

⟨u⊥, u⊥⟩
∈ ker(f)⊥.

From (1.17), for u ∈ H, there exists w ∈ ker(f) and α ∈ R such that

u = w + αu⊥.

Then we calculate by using α = ⟨u, u⊥⟩/⟨u⊥, u⊥⟩,

f(u) = f(w + αu⊥) = f(w) + αf(u⊥) =
f(u⊥)

⟨u⊥, u⊥⟩
⟨u, u⊥⟩ = ⟨u, v⟩,

for all u ∈ H. □
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