1 Variational Problem

1.1 One dimensional case

Let $\Omega:=(a, b)$ be an open interval. We consider a functional I, a map from a function space to \mathbb{R}, defined by

$$
I(u):=\int_{\Omega}\left(\frac{d u}{d x}\right)^{2} d x
$$

where $u: \Omega \rightarrow \mathbb{R}$. Our goal is to find a minimizer of I in the set

$$
\mathcal{K}:=\left\{u \in C^{1}(\Omega) \cap C^{0}(\bar{\Omega}) ; u(a)=\alpha, u(b)=\beta\right\} .{ }^{\dagger}
$$

Definition 1.1. A function $u \in \mathcal{K}$ is a minimizer of I on \mathcal{K} if it satisfies

$$
\inf _{v \in \mathcal{K}} I(v)=I(u)
$$

Remark 1.1. Since I is nonnegative, it is bounded from below. Hence there exists infimum of I by continuity of real numbers.

Definition 1.2. Let $C_{0}^{\infty}(\Omega)$ be a set of smooth function whose support,

$$
\operatorname{spt} \varphi:=\overline{\{x \in \mathbb{R} ; \varphi(x) \neq 0\}},
$$

is compact and contained in Ω.
Proposition 1.1. Let $\varphi \in C_{0}^{\infty}(\Omega)$. Then there exists $\varepsilon_{0}>0$ such that $\varphi(x)=0$ for any $x \in\left\{x \in \Omega ; \operatorname{dist}(x, \partial \Omega)<\varepsilon_{0}\right\}$.

Example 1.1. A graph of $\varphi \in C_{0}^{\infty}(\Omega)$ is shown in the below figure:

Let $\varphi \in C_{0}^{\infty}(\Omega)$ and ε be a small number. We assume that u is a minimizer of I in \mathcal{K}. Since $C^{1}(\Omega) \cap C^{0}(\bar{\Omega})$ is a linear space and $\varphi(x)=0$ for all $x \in \partial \Omega$, we obtain $u+\varepsilon \varphi \in \mathcal{K}$. Then

$$
\begin{aligned}
I(u+\varepsilon \varphi) & =\int_{\Omega}\left(\frac{d(u+\varepsilon \varphi)}{d x}\right)^{2} d x \\
& =\int_{\Omega}\left(\frac{d u}{d x}\right)^{2} d x+2 \varepsilon \int_{\Omega} \frac{d u}{d x} \frac{d \varphi}{d x} d x+\varepsilon^{2} \int_{\Omega}\left(\frac{d u}{d x}\right)^{2} d x
\end{aligned}
$$

Fig. 1: Graph of u and $u+\varepsilon \varphi$

The function $\varepsilon \mapsto I(u+\varepsilon \varphi)$ must have a local minimum at $\varepsilon=0$. Moreover, $\varepsilon \mapsto I(u+\varepsilon \varphi)$ is a differentiable function in ε. Hence we see that

$$
\begin{equation*}
\left.\frac{d}{d \varepsilon} I(u+\varepsilon \varphi)\right|_{\varepsilon=0}=0 \tag{1.1}
\end{equation*}
$$

The left-hand side of (1.1) is called the first variation of I. We have by (1.1)

$$
\begin{aligned}
0 & =\left.\frac{d}{d \varepsilon} I(u+\varepsilon \varphi)\right|_{\varepsilon=0} \\
& =\left.\frac{d}{d \varepsilon}\left(\int_{\Omega}\left(\frac{d u}{d x}\right)^{2} d x+2 \varepsilon \int_{\Omega} \frac{d u}{d x} \frac{d \varphi}{d x} d x+\varepsilon^{2} \int_{\Omega}\left(\frac{d \varphi}{d x}\right)^{2} d x\right)\right|_{\varepsilon=0} \\
& =2 \int_{\Omega} \frac{d u}{d x} \frac{d \varphi}{d x} d x
\end{aligned}
$$

We rewrite the above equality as

$$
\begin{equation*}
-\int_{\Omega} \frac{d u}{d x} \frac{d \varphi}{d x} d x=0 \quad\left(\forall \varphi \in C_{0}^{\infty}(\Omega)\right) \tag{1.2}
\end{equation*}
$$

Additionally, we assume that $u \in C^{2}(\Omega)$. From the integration by parts and (1.2), we obtain

$$
\int_{\Omega} \frac{d^{2} u}{d x^{2}} \varphi d x=\left[\frac{d u}{d x} \varphi\right]_{x=a}^{x=b}-\int_{\Omega} \frac{d u}{d x} \frac{d \varphi}{d x} d x=0 \quad\left(\forall \varphi \in C_{0}^{\infty}(\Omega)\right) .
$$

Hence we have

$$
\begin{equation*}
\frac{d^{2} u}{d x^{2}}=0 \quad \text { in } \Omega \tag{1.3}
\end{equation*}
$$

We call (1.2) the weak formulation of (1.3). (1.3) implies that u is a linear function.

[^0]
1.2 Multi dimensional case

Let $\Omega \subset \mathbb{R}^{n}$ be a domain and have a Lipschitz boundary. Similarly, we define a functional

$$
I(u):=\int_{\Omega}|\nabla u|^{2} d x
$$

and a function set

$$
\mathcal{K}:=\left\{u \in C^{1}(\Omega) \cap C^{0}(\bar{\Omega}) ;\left.u\right|_{\partial \Omega}=g\right\},
$$

where $\nabla u:=\left(\frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}}, \cdots, \frac{\partial u}{\partial x_{n}}\right),|\nabla u|^{2}:=\nabla u \cdot \nabla u$ and g is a given function. If u is a minimizer of I in \mathcal{K}, then u satisfies

$$
-\int_{\Omega} \nabla u \nabla \varphi d x=0 \quad\left(\forall \varphi \in C_{0}^{\infty}(\Omega)\right)
$$

Moreover, if $u \in C^{2}(\Omega)$, we obtain,

$$
\begin{equation*}
\Delta u=0 \quad \text { in } \Omega \quad\left(\Delta u:=\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}\right) . \tag{1.4}
\end{equation*}
$$

1.3 Numerical calculation

The equation (1.4) is called Laplace's equation. It is difficult for us to consider multi-dimensional Laplace's equation mathematically on arbitrary domain Ω. But the numerical calculation of this equation is not difficult.

First, let us consider it in the one-dimensional case:

$$
\left\{\begin{array}{l}
\frac{d^{2} u}{d x^{2}}=0 \quad \text { in } \Omega:=(0,1) \\
u(0)=\alpha, \quad u(1)=\beta
\end{array}\right.
$$

Let $\Delta x:=1 / N(N \in \mathbb{N})$ and divide Ω into N intervals of equal length.

In this situation, we use the finite difference approximation

$$
\begin{equation*}
\frac{d^{2} u}{d x^{2}}(x) \simeq \frac{u(x+\Delta x)-2 u(x)+u(x-\Delta x)}{(\Delta x)^{2}} \tag{1.5}
\end{equation*}
$$

If $u \in C^{2}(\Omega)$, the quantity of (1.5) converges to $\frac{d^{2} u}{d x^{2}}$ as $\Delta x \rightarrow 0$.

$$
\begin{equation*}
\frac{u_{i+1}-2 u_{i}+u_{i-1}}{(\Delta x)^{2}}=0 \quad i=1,2, \cdots, N-1 \tag{1.6}
\end{equation*}
$$

where $u_{i}:=u(i \Delta x)(i=0,1, \cdots, N)$. We restrict the equation only on the nodal points. We rewrite (1.6) as a system of linear equations of the form $A x=b$:

$$
\left(\begin{array}{cccccc}
2 & -1 & 0 & \cdots & \cdots & 0 \tag{1.7}\\
-1 & 2 & -1 & 0 & \cdots & 0 \\
0 & -1 & 2 & 0 & \cdots & 0 \\
\vdots & & & & & \vdots \\
0 & \cdots & 0 & -1 & 2 & -1 \\
0 & \cdots & 0 & 0 & -1 & 2
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{N-2} \\
u_{N-1}
\end{array}\right)=\left(\begin{array}{c}
\alpha \\
0 \\
0 \\
\vdots \\
0 \\
\beta
\end{array}\right) .
$$

From (1.6), for each $i=1,2, \cdots, N-1$,

$$
\begin{aligned}
u_{i+1}-2 u_{i}+u_{i-1} & =0 \\
u_{i} & =\frac{u_{i+1}+u_{i-1}}{2}
\end{aligned}
$$

Hence this formula shows (is the figure part of the sentence)

For each $i=1,2, \cdots, N-1, u_{i}$ is an average of u_{i+1} and u_{i-1}. Usually, a system of linear equations can be solved by using the Gaussian elimination method. This method is simple, but it may cause some troubles in a special case.
In equation (1.7), since A is a positive definite symmetric matrix, we obtain that
Solve $A x=b \quad \Longleftrightarrow \quad$ Find the minimizer of $f(x):=\frac{1}{2}(x, A x)-(b, x)$.

Definition 1.3. Matrix A is positive definite if all of its eigenvalues are positive.

Definition 1.4. Matrix A is a symmetric matrix if it satisfies $A=A^{t}$ where A^{t} denotes the transpose of A.

Hence, to solve (1.7), we consider a minimization problem for f. To simplify, we assume $\alpha=\beta=0$ and $N=3$. Then

$$
f(x)=x^{r}\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) x \quad\left(x \in \mathbb{R}^{2}\right)
$$

Problem. Choose $C>0$ and plot the set $\{x ; f(x)=C\}$ for $C=1$.

The Fig. 2 is the level set of f. Let $x_{0} \in \mathbb{R}^{N-1}$ be an initial point of numerical computation. Firstly, calculate the gradient of $f(x)$ at x_{0}. It is perpendicular to the level set. Secondly, draw a line passing x_{0} with direction $\nabla f\left(x_{0}\right)$ and find a minimum point x_{1} on the line. We again calculate the gradient of $f(x)$ at x_{1}. We repeat this procedure. It may take a long time to calculate in this way. If A is an identity matrix, we can find the minimum in one iteration. We

Fig. 2: Level set of f

Fig. 3: Level set of f if A is an identity matrix
expect that the convergence will be fast if A is similar to an identity matrix.

Hence we find a matrix $C \sim A^{-1}$ and solve $C A x=C b$. In the equation (1.7), we should choose

$$
C=\left(\begin{array}{cccc}
\frac{1}{a_{1,1}} & 0 & \cdots & 0 \\
0 & \frac{1}{a_{2,2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{a_{N-1, N-1}}
\end{array}\right)
$$

But in other case, it isn't easy to find such a matrix C.

1.4 Another way to derive the system of linear equations

The original problem is finding the minimizer of the functional

$$
I(u)=\int_{\Omega}\left(\frac{d u}{d x}\right)^{2} d x \quad(\Omega:=(0,1))
$$

on the set

$$
\mathcal{K}:=\left\{v \in C^{1}(\Omega) \cap C^{0}(\bar{\Omega}) ; v(0)=\alpha, v(1)=\beta\right\}
$$

Let $\Delta x:=1 / N(N \in \mathbb{N})$ and divide Ω into N intervals of equal length. We approximate the function u by a piecewise linear function:

Then we can calculate I of the approximating function, and introduce functional \tilde{I} :

$$
\begin{equation*}
\tilde{I}\left(\left(a_{1}, a_{2}, \cdots, a_{N-1}\right)=\sum_{i=1}^{N-1}\left(\frac{a_{i+1}-a_{i}}{\Delta x}\right)^{2} \Delta x=\sum_{i=0}^{N-1} \frac{\left(a_{i+1}-a_{i}\right)^{2}}{\Delta x} .\right. \tag{1.9}
\end{equation*}
$$

\tilde{I} will be the function f in (1.8) of the minimization problem.

The graph of \tilde{I} is shown in the above figure. We can see that the graph is quadratic. Hence, the partial derivative of \tilde{I} vanishes at a minimizer:

$$
\begin{equation*}
\frac{\partial \tilde{I}}{\partial a_{i}}=0 \quad i=1, \cdots, N-1 \tag{1.10}
\end{equation*}
$$

Consequently we get

$$
\begin{equation*}
a_{i+1}-2 a_{i}+a_{i-1}=0 \quad i=1, \cdots, N-1 . \tag{1.11}
\end{equation*}
$$

We can change the above to (1.7).

1.5 One dimensional Finite elements method

Let us consider the weak formula

$$
\begin{equation*}
-\int_{\Omega} \frac{d u}{d x} \frac{d \varphi}{d x} d x=0 \quad\left(\forall \varphi \in C_{0}^{\infty}(\Omega)\right) \tag{1.12}
\end{equation*}
$$

We approximate u by using following base functions $\left\{\varphi_{i}\right\}_{i}^{N}$ as

$$
\begin{equation*}
u \simeq \sum_{i=0}^{N} a_{i} \varphi_{i} \tag{1.13}
\end{equation*}
$$

For each test function $\varphi_{j}(j=1, \cdots, N-1)$, we get from (1.12)

$$
-\int_{\Omega} \frac{d}{d x}\left(\sum_{i=0}^{N} a_{i} \varphi_{i}\right) \frac{d \varphi_{j}}{d x} d x=0
$$

In the numerical calculation, we do not need to require that φ_{j} belongs to $C_{0}^{\infty}(\Omega)$. Finally, we get

$$
\sum_{i=0}^{N} a_{i} \int_{\Omega} \varphi_{i}^{\prime} \varphi_{j}^{\prime} d x=0 \quad j=1, \cdots, N-1
$$

Forethermore, by using the formula

$$
\int_{\Omega} \varphi_{i}^{\prime} \varphi_{j}^{\prime} d x=\left\{\begin{array}{cl}
\frac{2}{\Delta x} & i=j \tag{1.14}\\
-\frac{1}{\Delta x} & |i-j|=1 \\
0 & |i-j| \geq 2
\end{array}\right.
$$

we obtain (1.7).

1.6 Completeness of the Sobolev Space

We introduce a function space to prove the existence of a minimizer. Let us confirm the definition of infimum. Let $A \subset \mathbb{R}$ be bounded from below. If $\alpha \in \mathbb{R}$ satisfies that
(i) $\alpha \leq x \quad(\forall x \in A)$;
(ii) $\forall \varepsilon>0, \exists x_{\varepsilon} \in A$ s.t. $\alpha+\varepsilon>x_{\varepsilon}$,
we call α the infimum of A and write $=\inf A:=\alpha$. By (ii), there exists $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset A$ s.t.

$$
x_{n} \geq x_{n+1} \quad(\forall n \in \mathbb{N}), \quad x_{n} \rightarrow \alpha \quad(n \rightarrow \infty)
$$

Similary, there exists $\left\{v_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{K}$ s.t.

$$
I\left(v_{n}\right) \geq I\left(v_{n+1}\right) \quad(\forall n \in \mathbb{N}), \quad \lim _{n \rightarrow \infty} I\left(v_{n}\right)=\inf _{v \in \mathcal{K}} I(v) .
$$

It is important to note that the sequence $\left\{v_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{K}$ may not converge to a function v belonging to \mathcal{K}.

Example For each $n \in \mathbb{N}$, we define $f_{n}:[0,1] \rightarrow \mathbb{R}$ as follows

$$
f_{n}(x):=\left\{\begin{array}{cl}
2 n^{2} x & \text { if } x \in[0,1 /(2 n)) \\
-2 n^{2} x+2 n & \text { if } x \in[1 /(2 n), 1 / n) \\
0 & \text { otherwise }
\end{array}\right.
$$

The graph of f_{n} is shown below.

$\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a pointwise convergent function sequence. Pointwise means that for each $x \in \Omega$, there exists $f_{x} \in \mathbb{R}$ such that

$$
f_{n}(x) \rightarrow f_{x} \quad(n \rightarrow \infty) .
$$

In this case, for each $x \in \Omega$, we define

$$
f(x):=\lim _{n \rightarrow \infty} f_{n}(x)=0 .
$$

Also, calculating the integra of f_{n}, we see that

$$
\lim _{n \rightarrow \infty} \int_{\Omega} f_{n}(x) d x=\frac{1}{2} \neq \int_{\Omega} f(x) d x
$$

On the other hand, if $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a uniformly convergent function sequence, it is possible to exchange the limit and the integral. Uniform convergence means that there exists a function $f: \Omega \rightarrow \mathbb{R}$ such that

$$
\sup _{x \in \Omega}\left|f_{n}(x)-f(x)\right| \rightarrow 0 \quad(n \rightarrow \infty)
$$

Then we have

$$
\begin{aligned}
\left|\int_{\Omega} f_{n}(x) d x-\int_{\Omega} f(x) d x\right| & \leq \int_{\Omega}\left|f_{n}(x)-f(x)\right| d x \\
& \leq \int_{\Omega} \sup _{\tilde{x} \in \Omega}\left|f_{n}(\tilde{x})-f(\tilde{x})\right| d x \\
& =\sup _{x \in \Omega}\left|f_{n}(x)-f(x)\right||\Omega| \\
& \rightarrow 0 \quad(n \rightarrow \infty) .
\end{aligned}
$$

Hence

$$
\lim _{n \rightarrow \infty} \int_{\Omega} f_{n}(x) d x=\int_{\Omega} f(x) d x
$$

We define the function space

$$
L^{2}(\Omega):=\left\{f \in \text { measurable; } \int_{\Omega} f(x)^{2} d x<\infty\right\} .
$$

$L^{2}(\Omega)$ is a linear space, and we define the L^{2} inner product and the L^{2} norm

$$
(f, g):=\int_{\Omega} f(x) \cdot g(x) d x, \quad\|f\|_{L^{2}(\Omega)}:=\sqrt{(f, f)} \quad\left(f, g \in L^{2}(\Omega)\right)
$$

Then $L^{2}(\Omega)$ is a Banach space with the above norm.
Definition 1.5. (weak derivative) For a function $u \in L_{l o c}^{1}$ defined by

$$
L_{l o c}^{1}(\Omega):=\left\{f \in \text { measurable } ; \forall K \Subset \Omega, \int_{K}|f(x)| d x<\infty\right\}
$$

there exists a function $v \in L_{l o c}^{1}$ such that

$$
\begin{equation*}
\int_{\Omega} \frac{\partial}{\partial x_{i}} \varphi(x) u(x) d x=-\int_{\Omega} \varphi(x) v(x) d x \quad\left(\forall \varphi \in C_{0}^{\infty}(\Omega)\right) \tag{1.15}
\end{equation*}
$$

We call v the weak derivative of u, and we write $\partial u / \partial x_{i}:=v$.
If u is a differentiable function, we obtain (1.15) from the integration by parts. Thus u has a weak derivative. We define the Sobolev space $W^{1,2}$.

Definition 1.6. We define the Sobolev space

$$
W^{1,2}(\Omega):=\left\{f \in \text { measurable; } f \in L^{2}(\Omega), f_{x_{i}} \in L^{2}(\Omega)(i=1,2, \cdots, N)\right\}
$$

where $f_{x_{i}}$ is a weak derivative of f. Sometimes we write $H^{1}(\Omega)$ as $W^{1,2}(\Omega)$.
Let us show that $W^{1,2}(\Omega)$ equipped with the norm

$$
\langle f, g\rangle:=\int_{\Omega}(f \cdot g+\nabla f \cdot \nabla g) d x, \quad\|f\|_{W^{1,2}(\Omega)}:=\sqrt{\langle f, f\rangle} \quad\left(f, g \in W^{1,2}(\Omega)\right)
$$

is a Banach space. Let $\left\{f_{n}\right\}_{n \in \mathbb{N}} \subset L^{2}(\Omega)$ be a Cauchy sequence. From the definition of Cauchy sequence,

$$
\left\|f_{n}-f_{m}\right\|_{W^{1,2}(\Omega)} \rightarrow 0 \quad(n, m \rightarrow \infty)
$$

Then

$$
\left\|f_{n}-f_{m}\right\|_{L^{2}(\Omega)} \leq\left\|f_{n}-f_{m}\right\|_{W^{1,2}(\Omega)} \rightarrow 0
$$

$$
\left\|\frac{\partial f_{n}}{\partial x_{i}}-\frac{\partial f_{m}}{\partial x_{i}}\right\|_{L^{2}(\Omega)} \leq\left\|f_{n}-f_{m}\right\|_{W^{1,2}(\Omega)} \rightarrow 0 \quad i=1, \cdots, N
$$

as n and m to ∞. Therefore $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{\partial f_{n} / \partial x_{i}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence on $L^{2}(\Omega)$. From the completeness of $L^{2}(\Omega)$, there exists $f, v_{i} \in L^{2}(\Omega)$ such that

$$
f_{n} \rightarrow f, \quad \frac{\partial f_{n}}{\partial x_{i}} \rightarrow v_{i} \quad \text { in } L^{2}(\Omega) \quad(n \rightarrow \infty)
$$

Then we have from the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\left|\int_{\Omega} \frac{\partial}{\partial x_{i}} \varphi(x) f_{n}(x) d x-\int_{\Omega} \frac{\partial}{\partial x_{i}} \varphi(x) f(x) d x\right| & \leq \int_{\Omega}\left|\frac{\partial}{\partial x_{i}} \varphi(x)\right|\left|f_{n}(x)-f(x)\right| d x \\
& \leq\left\|\frac{\partial \varphi}{\partial x_{i}}\right\|_{L^{2}(\Omega)}\left\|f_{n}-f\right\|_{L^{2}(\Omega)} \\
& \rightarrow 0 \quad(n \rightarrow \infty)
\end{aligned}
$$

Hence,

$$
\lim _{n \rightarrow \infty} \int_{\Omega} \frac{\partial}{\partial x_{i}} \varphi(x) f_{n}(x) d x=\int_{\Omega} \frac{\partial}{\partial x_{i}} \varphi(x) f(x) d x
$$

Similary, we obtain

$$
\lim _{n \rightarrow \infty} \int_{\Omega} \varphi(x) \frac{\partial}{\partial x_{i}} f_{n}(x) d x=\int_{\Omega} \varphi(x) v_{i}(x) d x
$$

Thu v_{i} is a weak derivative of f. From the above, $W^{1,2}(\Omega)$ is a Banach space.
Example 1.2. Let $f:(0,1) \rightarrow \mathbb{R}$ be a function definded by

$$
f(x):= \begin{cases}1 & x \in(0,1 / 2) \\ 0 & x \in[1 / 2,1)\end{cases}
$$

f is not weakly differentiable.

Proof. We assume that f is weakly differentiable. Hence there exists $g \in$ $L_{l o c}^{1}(0,1)$ such that

$$
\begin{equation*}
\int_{0}^{1} \frac{\partial}{\partial x} \varphi(x) f(x) d x=-\int_{0}^{1} \varphi(x) g(x) d x \quad\left(\forall \varphi \in C_{0}^{\infty}(0,1)\right) . \tag{1.16}
\end{equation*}
$$

We calculate the left-hand side of (1.16)

$$
\int_{0}^{1} \frac{\partial}{\partial x} \varphi(x) f(x) d x=\int_{0}^{1 / 2} \frac{\partial}{\partial x} \varphi(x) d x=\varphi\left(\frac{1}{2}\right) .
$$

Therefore we have $g \equiv 0$ in $(0,1) \backslash\{1 / 2\}$. But this is a contradiction.

1.7 Hilbert Space

Definition 1.7. A Hilbert space H is a vector space endowed with an inner product $\langle\cdot, \cdot\rangle$ that is complete in the associated norm $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$.

Clearly, a Hilbert space H is also a Banach space.
Definition 1.8. Let $\left\{u_{n}\right\} \subset H$ and $u \in H .\left\{u_{n}\right\}$ is said to converge weakly $u \in H\left(u_{n} \rightharpoonup u\right)$ if

$$
\left\langle u_{n}, \varphi\right\rangle \rightarrow\langle u, \varphi\rangle
$$

as $n \rightarrow \infty$, for each $\varphi \in H$.
Let X be a Banach space with a norm $\|\cdot\|_{X}$, and X^{*} be set of bounded linear functionals on X. From the definition, $f \in X^{*}$ satisfies

$$
f(\alpha u+\beta v)=\alpha f(u)+\beta f(v) \quad u, v \in X, \alpha, \beta \in \mathbb{R}
$$

and there exists $M>0$ such that

$$
|f(u)| \leq M\|u\|_{X} \quad \forall u \in X
$$

Then we can show that f is continuous. Indeed, for each $\left\{u_{n}\right\} \subset X ; u_{n} \rightarrow$ u in X,

$$
\left|f\left(u_{n}\right)-f(u)\right|=\left|f\left(u_{n}-u\right)\right| \leq M\left\|u_{n}-u\right\| \rightarrow 0
$$

We can define norm for X^{*}.
Definition 1.9. Let X be a Banach space and X^{*} be the set of bounded linear functionals on X. Then we define the norm on X^{*} as

$$
\|f\|_{X^{*}}:=\sup _{u \in X,\|u\|_{X}=1}|f(u)| .
$$

X^{*} is called the dual space of X.
Obviously, X^{*} is also a Banach space. Similarly, we can define $X^{* *}$ as the set of bounded linear functionals on X^{*}.

Proposition 1.2. Let X be a Banach space and $X^{* *}$ be the dual space of X^{*} where X^{*} is the dual space of X. Then $X^{* *} \supset X$.

Proof. Let $u \in X$ and we can define $u: X^{*} \rightarrow \mathbb{R}$,

$$
u(f):=f(u) \quad\left(\forall f \in X^{*}\right)
$$

Then we have that u is a linear functional of X^{*} and

$$
|u(f)| \leq M\|u\|_{X} \leq\|u\|_{X}\|f\|_{X^{*}} \quad\left(\forall f \in X^{*}\right)
$$

Hence $u \in X^{* *}$.
Definition 1.10. Let X be a Banach space. If $X^{* *}=X$, then we call X a reflexive Banach space.

Definition 1.11. Let X be a Banach space. X is called separable if there exists $\left\{\varphi_{i}\right\} \subset X$ such that $\overline{\left\{\varphi_{i}\right\}}=X$ where \bar{A} is the closure of A in X.

Theorem 1.1. Let X be a separable Hilbert space and $\left\{f_{n}\right\} \subset X^{*}$. We assume that $\left\{f_{n}\right\}$ is bounded, i.e., there exists $M>0$ such that $\left\|f_{n}\right\|_{X^{*}} \leq M(\forall n \in \mathbb{N})$. Then there exists a subsequence $\left\{f_{n_{j}}\right\}_{j}, f \in X^{*}$ such that

$$
f_{n_{j}} \xrightarrow{*} f \quad(j \rightarrow \infty) .
$$

(i.e. $f_{n_{j}}(\varphi) \rightarrow f(\varphi)$ for all $\varphi \in X$).

Proof Since X is separable, there exists $\left\{\varphi_{i}\right\} \subset X$ such that $\overline{\left\{\varphi_{i}\right\}}=X$. Then we get

$$
\left|f_{n}\left(\varphi_{1}\right)\right| \leq\left\|f_{n}\right\|_{X^{*}}\left\|\varphi_{1}\right\|_{X} \leq M\left\|\varphi_{1}\right\|_{X} \quad(\forall n \in \mathbb{N}),
$$

hence there exists a subsequence $\left\{f_{1, n}\left(\varphi_{1}\right)\right\}_{n}, \alpha^{1} \in \mathbb{R}$ such that

$$
\lim _{n \rightarrow \infty} f_{1, n}\left(\varphi_{1}\right)=\alpha^{1} .
$$

Similarly, we can see that there exists a subsequence $\left\{f_{2, n}\left(\varphi_{2}\right)\right\}_{n}, \alpha^{2} \in \mathbb{R}$ such that

$$
\lim _{n \rightarrow \infty} f_{2, n}\left(\varphi_{2}\right)=\alpha^{2}
$$

We write $\left\{f_{n_{j}}\right\}_{j}$ as $\left\{f_{n, n}\right\}$. Then $\left\{f_{n_{j}}\right\}_{j}$ satisfies that

$$
f_{n_{j}}\left(\varphi_{i}\right) \rightarrow \alpha^{i}=: \tilde{f}\left(\varphi_{i}\right) \quad(j \rightarrow \infty)
$$

for each $i \in \mathbb{N}$. Since $\overline{\left\{\varphi_{i}\right\}}=X$, for each $\varphi \in X$, there exists $\left\{\tilde{\varphi}_{i}\right\} \subset\left\{\varphi_{i}\right\}$ such that $\tilde{\varphi}_{i} \rightarrow \varphi$ in $X(i \rightarrow \infty)$. We define $f(\varphi):=\lim _{i \rightarrow \infty} \tilde{f}\left(\tilde{\varphi}_{i}\right)$. Then $f \in X^{*}$.

Theorem 1.2. (Riesz representation) Let H be a Hilbert space and $f \in H^{*}$. Then there exists a unique $v \in H$ such that

$$
f(u)=\langle v, u\rangle \quad(\forall u \in H) .
$$

Proof. First, we consider the finite dimensional case, $H=\mathbb{R}^{n}$. Then f : $\mathbb{R}^{n} \rightarrow \mathbb{R}$ is a linear function and $\langle u, v\rangle=u \cdot v\left(\forall u, v \in \mathbb{R}^{n}\right)$. We can rewrite the function f as a inner product. Next, we consider the infinite dimensional case. We define

$$
\operatorname{ker}(f):=\{u \in H ; f(u)=0\} .
$$

Since f is a linear, $\operatorname{ker}(f)$ is a linear subset and a closed set. In fact,

$$
f(\alpha u+\beta v)=\alpha f(u)+\beta f(v)=0
$$

for each $u, v \in \operatorname{ker}(f), \alpha, \beta \in \mathbb{R}$, and for $\left\{u_{n}\right\} \subset \operatorname{ker}(f) ; u_{n} \rightarrow u_{0}$,

$$
0=\lim _{n \rightarrow \infty} f\left(u_{n}\right)=f\left(\lim _{n \rightarrow \infty} u_{n}\right)=f\left(u_{0}\right)
$$

thus $u_{0} \in \operatorname{ker}(f)$. Therefore, we get

$$
\begin{equation*}
H=\operatorname{ker}(f) \oplus \operatorname{ker}(f)^{\perp} \tag{1.17}
\end{equation*}
$$

In other words, for $u \in H$, there exsist a unique $u_{1} \in \operatorname{ker}(f)$ and $u_{2} \in \operatorname{ker}(f)^{\perp}$ such that $u=u_{1}+u_{2}$. Let $u^{\perp} \in \operatorname{ker}(f)^{\perp}$, and we define

$$
v:=\frac{f\left(u^{\perp}\right) u^{\perp}}{\left\langle u^{\perp}, u^{\perp}\right\rangle} \in \operatorname{ker}(f)^{\perp} .
$$

From (1.17), for $u \in H$, there exists $w \in \operatorname{ker}(f)$ and $\alpha \in \mathbb{R}$ such that

$$
u=w+\alpha u^{\perp} .
$$

Then we calculate by using $\alpha=\left\langle u, u^{\perp}\right\rangle /\left\langle u^{\perp}, u^{\perp}\right\rangle$,

$$
f(u)=f\left(w+\alpha u^{\perp}\right)=f(w)+\alpha f\left(u^{\perp}\right)=\frac{f\left(u^{\perp}\right)}{\left\langle u^{\perp}, u^{\perp}\right\rangle}\left\langle u, u^{\perp}\right\rangle=\langle u, v\rangle,
$$

for all $u \in H$.

[^0]: ${ }^{\dagger}$ In mathematical sense, function space should be $\left\{u \in W^{1,2}(\Omega)\right.$; with b.c. $\}$ so that a minimizer of I exists where $W^{1,2}$ is a Sobolev space with $u, u_{x_{i}} \in L^{2}(\Omega)$.

