## 1 Variational Problem

### 1.1 One dimensional case

Let  $\Omega := (a, b)$  be an open interval. We consider a functional I, a map from a function space to  $\mathbb{R}$ , defined by

$$I(u) := \int_{\Omega} \left(\frac{du}{dx}\right)^2 dx,$$

where  $u: \Omega \to \mathbb{R}$ . Our goal is to find a minimizer of I in the set

$$\mathcal{K} := \{ u \in C^1(\Omega) \cap C^0(\overline{\Omega}); u(a) = \alpha, u(b) = \beta \}.$$

**Definition 1.1.** A function  $u \in \mathcal{K}$  is a minimizer of I on  $\mathcal{K}$  if it satisfies

$$\inf_{v \in \mathcal{K}} I(v) = I(u).$$

**Remark 1.1.** Since I is nonnegative, it is bounded from below. Hence there exists infimum of I by continuity of real numbers.

**Definition 1.2.** Let  $C_0^{\infty}(\Omega)$  be a set of smooth function whose support,

$$\operatorname{spt}\varphi := \overline{\{x \in \mathbb{R}; \varphi(x) \neq 0\}},$$

is compact and contained in  $\Omega$ .

**Proposition 1.1.** Let  $\varphi \in C_0^{\infty}(\Omega)$ . Then there exists  $\varepsilon_0 > 0$  such that  $\varphi(x) = 0$  for any  $x \in \{x \in \Omega; \operatorname{dist}(x, \partial \Omega) < \varepsilon_0\}$ .

**Example 1.1.** A graph of  $\varphi \in C_0^{\infty}(\Omega)$  is shown in the below figure:



Let  $\varphi \in C_0^{\infty}(\Omega)$  and  $\varepsilon$  be a small number. We assume that u is a minimizer of I in  $\mathcal{K}$ . Since  $C^1(\Omega) \cap C^0(\overline{\Omega})$  is a linear space and  $\varphi(x) = 0$  for all  $x \in \partial\Omega$ , we obtain  $u + \varepsilon \varphi \in \mathcal{K}$ . Then

$$I(u + \varepsilon\varphi) = \int_{\Omega} \left(\frac{d(u + \varepsilon\varphi)}{dx}\right)^2 dx$$
  
= 
$$\int_{\Omega} \left(\frac{du}{dx}\right)^2 dx + 2\varepsilon \int_{\Omega} \frac{du}{dx} \frac{d\varphi}{dx} dx + \varepsilon^2 \int_{\Omega} \left(\frac{du}{dx}\right)^2 dx.$$



Fig. 1: Graph of u and  $u + \varepsilon \varphi$ 

The function  $\varepsilon \mapsto I(u + \varepsilon \varphi)$  must have a local minimum at  $\varepsilon = 0$ . Moreover,  $\varepsilon \mapsto I(u + \varepsilon \varphi)$  is a differentiable function in  $\varepsilon$ . Hence we see that

$$\left. \frac{d}{d\varepsilon} I(u + \varepsilon \varphi) \right|_{\varepsilon = 0} = 0. \tag{1.1}$$

The left-hand side of (1.1) is called the *first variation* of I. We have by (1.1)

$$0 = \frac{d}{d\varepsilon} I(u + \varepsilon\varphi) \Big|_{\varepsilon=0}$$
  
=  $\frac{d}{d\varepsilon} \left( \int_{\Omega} \left( \frac{du}{dx} \right)^2 dx + 2\varepsilon \int_{\Omega} \frac{du}{dx} \frac{d\varphi}{dx} dx + \varepsilon^2 \int_{\Omega} \left( \frac{d\varphi}{dx} \right)^2 dx \right) \Big|_{\varepsilon=0}$   
=  $2 \int_{\Omega} \frac{du}{dx} \frac{d\varphi}{dx} dx.$ 

We rewrite the above equality as

$$-\int_{\Omega} \frac{du}{dx} \frac{d\varphi}{dx} dx = 0 \quad (\forall \varphi \in C_0^{\infty}(\Omega)).$$
(1.2)

Additionally, we assume that  $u \in C^2(\Omega)$ . From the integration by parts and (1.2), we obtain

$$\int_{\Omega} \frac{d^2 u}{dx^2} \varphi dx = \left[ \frac{du}{dx} \varphi \right]_{x=a}^{x=b} - \int_{\Omega} \frac{du}{dx} \frac{d\varphi}{dx} dx = 0 \quad (\forall \varphi \in C_0^{\infty}(\Omega)).$$

Hence we have

$$\frac{d^2u}{dx^2} = 0 \quad \text{in } \Omega. \tag{1.3}$$

We call (1.2) the *weak formulation* of (1.3). (1.3) implies that u is a linear function.

<sup>&</sup>lt;sup>†</sup>In mathematical sense, function space should be  $\{u \in W^{1,2}(\Omega); \text{with b.c.}\}$  so that a minimizer of I exists where  $W^{1,2}$  is a Sobolev space with  $u, u_{x_i} \in L^2(\Omega)$ .

## 1.2 Multi dimensional case

Let  $\Omega \subset \mathbb{R}^n$  be a domain and have a Lipschitz boundary. Similarly, we define a functional

$$I(u) := \int_{\Omega} |\nabla u|^2 dx$$

and a function set

$$\mathcal{K} := \{ u \in C^1(\Omega) \cap C^0(\overline{\Omega}); u|_{\partial\Omega} = g \},\$$

where  $\nabla u := \left(\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \cdots, \frac{\partial u}{\partial x_n}\right), |\nabla u|^2 := \nabla u \cdot \nabla u$  and g is a given function. If u is a minimizer of I in  $\mathcal{K}$ , then u satisfies

$$-\int_{\Omega} \nabla u \nabla \varphi dx = 0 \quad (\forall \varphi \in C_0^{\infty}(\Omega)).$$

Moreover, if  $u \in C^2(\Omega)$ , we obtain,

$$\Delta u = 0 \quad \text{in } \Omega \quad \left( \Delta u := \sum_{i=1}^{n} \frac{\partial^2 u}{\partial x_i^2} \right). \tag{1.4}$$

### **1.3** Numerical calculation

The equation (1.4) is called Laplace's equation. It is difficult for us to consider multi-dimensional Laplace's equation mathematically on arbitrary domain  $\Omega$ . But the numerical calculation of this equation is not difficult.

First, let us consider it in the one-dimensional case:

$$\begin{cases} \frac{d^2u}{dx^2} = 0 & \text{in } \Omega := (0,1) \\ u(0) = \alpha, \quad u(1) = \beta. \end{cases}$$

Let  $\Delta x := 1/N$   $(N \in \mathbb{N})$  and divide  $\Omega$  into N intervals of equal length.



In this situation, we use the finite difference approximation

$$\frac{d^2u}{dx^2}(x) \simeq \frac{u(x + \Delta x) - 2u(x) + u(x - \Delta x)}{(\Delta x)^2}.$$
(1.5)

If  $u \in C^2(\Omega)$ , the quantity of (1.5) converges to  $\frac{d^2u}{dx^2}$  as  $\Delta x \to 0$ .

$$\frac{u_{i+1} - 2u_i + u_{i-1}}{(\Delta x)^2} = 0 \qquad i = 1, 2, \cdots, N - 1,$$
(1.6)

where  $u_i := u(i \Delta x)$   $(i = 0, 1, \dots, N)$ . We restrict the equation only on the nodal points. We rewrite (1.6) as a system of linear equations of the form Ax = b:

$$\begin{pmatrix} 2 & -1 & 0 & \cdots & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & 0 & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & \cdots & 0 & -1 & 2 & -1 \\ 0 & \cdots & 0 & 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_{N-2} \\ u_{N-1} \end{pmatrix} = \begin{pmatrix} \alpha \\ 0 \\ 0 \\ \vdots \\ 0 \\ \beta \end{pmatrix}.$$
(1.7)

From (1.6), for each  $i = 1, 2, \dots, N - 1$ ,

$$u_{i+1} - 2u_i + u_{i-1} = 0,$$
  
$$u_i = \frac{u_{i+1} + u_{i-1}}{2}$$

Hence this formula shows (is the figure part of the sentence)



For each  $i = 1, 2, \dots, N - 1$ ,  $u_i$  is an average of  $u_{i+1}$  and  $u_{i-1}$ . Usually, a system of linear equations can be solved by using the Gaussian elimination method. This method is simple, but it may cause some troubles in a special case.

In equation (1.7), since A is a positive definite symmetric matrix, we obtain that

Solve 
$$Ax = b$$
  $\iff$  Find the minimizer of  $f(x) := \frac{1}{2}(x, Ax) - (b, x)$ . (1.8)

**Definition 1.3.** Matrix A is positive definite if all of its eigenvalues are positive.

**Definition 1.4.** Matrix A is a symmetric matrix if it satisfies  $A = A^t$  where  $A^t$  denotes the transpose of A.

Hence, to solve (1.7), we consider a minimization problem for f. To simplify, we assume  $\alpha = \beta = 0$  and N = 3. Then

$$f(x) = x^r \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} x \qquad (x \in \mathbb{R}^2).$$

**Problem.** Choose C > 0 and plot the set  $\{x; f(x) = C\}$  for C = 1.



The Fig.2 is the level set of f. Let  $x_0 \in \mathbb{R}^{N-1}$  be an initial point of numerical computation. Firstly, calculate the gradient of f(x) at  $x_0$ . It is perpendicular to the level set. Secondly, draw a line passing  $x_0$  with direction  $\nabla f(x_0)$  and find a minimum point  $x_1$  on the line. We again calculate the gradient of f(x) at  $x_1$ . We repeat this procedure. It may take a long time to calculate in this way. If A is an identity matrix, we can find the minimum in one iteration. We







Fig. 3: Level set of f if A is an identity matrix

expect that the convergence will be fast if A is similar to an identity matrix.

Hence we find a matrix  $C \sim A^{-1}$  and solve CAx = Cb. In the equation (1.7), we should choose

$$C = \begin{pmatrix} \frac{1}{a_{1,1}} & 0 & \cdots & 0 \\ 0 & \frac{1}{a_{2,2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{a_{N-1,N-1}} \end{pmatrix}$$

But in other case, it isn't easy to find such a matrix C.

# 1.4 Another way to derive the system of linear equations

The original problem is finding the minimizer of the functional

$$I(u) = \int_{\Omega} \left(\frac{du}{dx}\right)^2 dx \quad (\Omega := (0, 1)),$$

on the set

$$\mathcal{K} := \{ v \in C^1(\Omega) \cap C^0(\overline{\Omega}); v(0) = \alpha, v(1) = \beta \},\$$

Let  $\Delta x := 1/N$   $(N \in \mathbb{N})$  and divide  $\Omega$  into N intervals of equal length. We approximate the function u by a piecewise linear function:



Then we can calculate I of the approximating function, and introduce functional  $\tilde{I}$ :

$$\tilde{I}((a_1, a_2, \cdots, a_{N-1})) = \sum_{i=1}^{N-1} \left(\frac{a_{i+1} - a_i}{\Delta x}\right)^2 \Delta x = \sum_{i=0}^{N-1} \frac{(a_{i+1} - a_i)^2}{\Delta x}.$$
 (1.9)

 $\tilde{I}$  will be the function f in (1.8) of the minimization problem.



The graph of  $\tilde{I}$  is shown in the above figure. We can see that the graph is quadratic. Hence, the partial derivative of  $\tilde{I}$  vanishes at a minimizer:

$$\frac{\partial \tilde{I}}{\partial a_i} = 0 \qquad i = 1, \cdots, N - 1.$$
(1.10)

Consequently we get

$$a_{i+1} - 2a_i + a_{i-1} = 0$$
  $i = 1, \cdots, N - 1.$  (1.11)

We can change the above to (1.7).

### 1.5 One dimensional Finite elements method

Let us consider the weak formula

$$-\int_{\Omega} \frac{du}{dx} \frac{d\varphi}{dx} dx = 0 \quad (\forall \varphi \in C_0^{\infty}(\Omega)).$$
(1.12)

We approximate u by using following base functions  $\{\varphi_i\}_i^N$  as

$$u \simeq \sum_{i=0}^{N} a_i \varphi_i. \tag{1.13}$$



For each test function  $\varphi_j$   $(j = 1, \dots, N-1)$ , we get from (1.12)

$$-\int_{\Omega} \frac{d}{dx} \left(\sum_{i=0}^{N} a_i \varphi_i\right) \frac{d\varphi_j}{dx} \, dx = 0.$$

In the numerical calculation, we do not need to require that  $\varphi_j$  belongs to  $C_0^{\infty}(\Omega)$ . Finally, we get

$$\sum_{i=0}^{N} a_i \int_{\Omega} \varphi'_i \varphi'_j \, dx = 0 \qquad j = 1, \cdots, N-1.$$

Forethermore, by using the formula

$$\int_{\Omega} \varphi'_i \varphi'_j \, dx = \begin{cases} \frac{2}{\Delta x} & i = j \\ -\frac{1}{\Delta x} & |i - j| = 1 \\ 0 & |i - j| \ge 2 \end{cases}$$
(1.14)

we obtain (1.7).

### **1.6** Completeness of the Sobolev Space

We introduce a function space to prove the existence of a minimizer. Let us confirm the definition of infimum. Let  $A \subset \mathbb{R}$  be bounded from below. If  $\alpha \in \mathbb{R}$  satisfies that

- (i)  $\alpha \le x \quad (\forall x \in A);$
- (ii)  $\forall \varepsilon > 0, \exists x_{\varepsilon} \in A \text{ s.t. } \alpha + \varepsilon > x_{\varepsilon},$

we call  $\alpha$  the infimum of A and write = inf A :=  $\alpha$ . By (ii), there exists  $\{x_n\}_{n\in\mathbb{N}}\subset A$  s.t.

$$x_n \ge x_{n+1} \quad (\forall n \in \mathbb{N}), \quad x_n \to \alpha \quad (n \to \infty).$$

Similarly, there exists  $\{v_n\}_{n\in\mathbb{N}}\subset\mathcal{K}$  s.t.

$$I(v_n) \ge I(v_{n+1}) \quad (\forall n \in \mathbb{N}), \quad \lim_{n \to \infty} I(v_n) = \inf_{v \in \mathcal{K}} I(v).$$

It is important to note that the sequence  $\{v_n\}_{n\in\mathbb{N}}\subset\mathcal{K}$  may not converge to a function v belonging to  $\mathcal{K}$ .

**Example** For each  $n \in \mathbb{N}$ , we define  $f_n : [0, 1] \to \mathbb{R}$  as follows

$$f_n(x) := \begin{cases} 2n^2x & \text{if } x \in [0, 1/(2n)), \\ -2n^2x + 2n & \text{if } x \in [1/(2n), 1/n), \\ 0 & \text{otherwise.} \end{cases}$$

The graph of  $f_n$  is shown below.



 $\{f_n\}_{n\in\mathbb{N}}$  is a pointwise convergent function sequence. Pointwise means that for each  $x\in\Omega$ , there exists  $f_x\in\mathbb{R}$  such that

$$f_n(x) \to f_x \quad (n \to \infty).$$

In this case, for each  $x \in \Omega$ , we define

$$f(x) := \lim_{n \to \infty} f_n(x) = 0.$$

Also, calculating the integra of  $f_n$ , we see that

$$\lim_{n \to \infty} \int_{\Omega} f_n(x) dx = \frac{1}{2} \neq \int_{\Omega} f(x) dx.$$

On the other hand, if  $\{f_n\}_{n\in\mathbb{N}}$  is a uniformly convergent function sequence, it is possible to exchange the limit and the integral. Uniform convergence means that there exists a function  $f: \Omega \to \mathbb{R}$  such that

$$\sup_{x \in \Omega} |f_n(x) - f(x)| \to 0 \quad (n \to \infty).$$

Then we have

$$\begin{aligned} \left| \int_{\Omega} f_n(x) dx - \int_{\Omega} f(x) dx \right| &\leq \int_{\Omega} |f_n(x) - f(x)| dx \\ &\leq \int_{\Omega} \sup_{\tilde{x} \in \Omega} |f_n(\tilde{x}) - f(\tilde{x})| dx \\ &= \sup_{x \in \Omega} |f_n(x) - f(x)| |\Omega| \\ &\to 0 \quad (n \to \infty). \end{aligned}$$

Hence

$$\lim_{n \to \infty} \int_{\Omega} f_n(x) dx = \int_{\Omega} f(x) dx.$$

We define the function space

$$L^{2}(\Omega) := \left\{ f \in \text{measurable}; \int_{\Omega} f(x)^{2} dx < \infty \right\}.$$

 $L^2(\Omega)$  is a linear space, and we define the  $L^2$  inner product and the  $L^2$  norm

$$(f,g) := \int_{\Omega} f(x) \cdot g(x) dx, \quad \|f\|_{L^{2}(\Omega)} := \sqrt{(f,f)} \quad (f,g \in L^{2}(\Omega)).$$

Then  $L^2(\Omega)$  is a Banach space with the above norm.

**Definition 1.5.** (weak derivative) For a function  $u \in L^1_{loc}$  defined by

$$L^1_{loc}(\Omega) := \left\{ f \in \text{measurable}; \forall K \Subset \Omega, \int_K |f(x)| dx < \infty \right\},\$$

there exists a function  $v \in L^1_{loc}$  such that

$$\int_{\Omega} \frac{\partial}{\partial x_i} \varphi(x) u(x) dx = -\int_{\Omega} \varphi(x) v(x) dx \quad (\forall \varphi \in C_0^{\infty}(\Omega)).$$
(1.15)

We call v the weak derivative of u, and we write  $\partial u/\partial x_i := v$ .

If u is a differentiable function, we obtain (1.15) from the integration by parts. Thus u has a weak derivative. We define the Sobolev space  $W^{1,2}$ .

Definition 1.6. We define the Sobolev space

$$W^{1,2}(\Omega) := \left\{ f \in \text{measurable}; f \in L^2(\Omega), f_{x_i} \in L^2(\Omega) \ (i = 1, 2, \cdots, N) \right\},$$

where  $f_{x_i}$  is a weak derivative of f. Sometimes we write  $H^1(\Omega)$  as  $W^{1,2}(\Omega)$ .

Let us show that  $W^{1,2}(\Omega)$  equipped with the norm

$$\langle f,g\rangle := \int_{\Omega} (f \cdot g + \nabla f \cdot \nabla g) dx, \quad \|f\|_{W^{1,2}(\Omega)} := \sqrt{\langle f,f\rangle} \quad (f,g \in W^{1,2}(\Omega)),$$

is a Banach space. Let  $\{f_n\}_{n\in\mathbb{N}} \subset L^2(\Omega)$  be a Cauchy sequence. From the definition of Cauchy sequence,

$$||f_n - f_m||_{W^{1,2}(\Omega)} \to 0 \quad (n, m \to \infty).$$

Then

$$||f_n - f_m||_{L^2(\Omega)} \le ||f_n - f_m||_{W^{1,2}(\Omega)} \to 0$$

$$\left\|\frac{\partial f_n}{\partial x_i} - \frac{\partial f_m}{\partial x_i}\right\|_{L^2(\Omega)} \le \|f_n - f_m\|_{W^{1,2}(\Omega)} \to 0 \qquad i = 1, \cdots, N$$

as n and m to  $\infty$ . Therefore  $\{f_n\}_{n\in\mathbb{N}}$  and  $\{\partial f_n/\partial x_i\}_{n\in\mathbb{N}}$  is a Cauchy sequence on  $L^2(\Omega)$ . From the completeness of  $L^2(\Omega)$ , there exists  $f, v_i \in L^2(\Omega)$  such that

$$f_n \to f$$
,  $\frac{\partial f_n}{\partial x_i} \to v_i$  in  $L^2(\Omega)$   $(n \to \infty)$ .

Then we have from the Cauchy-Schwarz inequality,

$$\begin{aligned} \left| \int_{\Omega} \frac{\partial}{\partial x_{i}} \varphi(x) f_{n}(x) dx - \int_{\Omega} \frac{\partial}{\partial x_{i}} \varphi(x) f(x) dx \right| &\leq \int_{\Omega} \left| \frac{\partial}{\partial x_{i}} \varphi(x) \right| |f_{n}(x) - f(x)| dx \\ &\leq \left\| \frac{\partial \varphi}{\partial x_{i}} \right\|_{L^{2}(\Omega)} \|f_{n} - f\|_{L^{2}(\Omega)} \\ &\to 0 \quad (n \to \infty). \end{aligned}$$

Hence,

$$\lim_{n \to \infty} \int_{\Omega} \frac{\partial}{\partial x_i} \varphi(x) f_n(x) dx = \int_{\Omega} \frac{\partial}{\partial x_i} \varphi(x) f(x) dx.$$

Similary, we obtain

$$\lim_{n \to \infty} \int_{\Omega} \varphi(x) \frac{\partial}{\partial x_i} f_n(x) dx = \int_{\Omega} \varphi(x) v_i(x) dx$$

Thu  $v_i$  is a weak derivative of f. From the above,  $W^{1,2}(\Omega)$  is a Banach space.

**Example 1.2.** Let  $f: (0,1) \to \mathbb{R}$  be a function definded by

$$f(x) := \begin{cases} 1 & x \in (0, 1/2) \\ 0 & x \in [1/2, 1) \end{cases}$$

f is not weakly differentiable.



**Proof.** We assume that f is weakly differentiable. Hence there exists  $g \in L^1_{loc}(0,1)$  such that

$$\int_0^1 \frac{\partial}{\partial x} \varphi(x) f(x) \, dx = -\int_0^1 \varphi(x) g(x) \, dx \quad (\forall \varphi \in C_0^\infty(0, 1)). \tag{1.16}$$

We calculate the left-hand side of (1.16)

$$\int_0^1 \frac{\partial}{\partial x} \varphi(x) f(x) \, dx = \int_0^{1/2} \frac{\partial}{\partial x} \varphi(x) \, dx = \varphi\left(\frac{1}{2}\right)$$

Therefore we have  $g \equiv 0$  in  $(0,1) \setminus \{1/2\}$ . But this is a contradiction.

#### 1.7 Hilbert Space

**Definition 1.7.** A Hilbert space H is a vector space endowed with an inner product  $\langle \cdot, \cdot \rangle$  that is complete in the associated norm  $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$ .

Clearly, a Hilbert space H is also a Banach space.

**Definition 1.8.** Let  $\{u_n\} \subset H$  and  $u \in H$ .  $\{u_n\}$  is said to converge weakly  $u \in H$   $(u_n \rightharpoonup u)$  if

$$\langle u_n, \varphi \rangle \to \langle u, \varphi \rangle$$

as  $n \to \infty$ , for each  $\varphi \in H$ .

Let X be a Banach space with a norm  $\|\cdot\|_X$ , and  $X^*$  be set of bounded linear functionals on X. From the definition,  $f \in X^*$  satisfies

$$f(\alpha u + \beta v) = \alpha f(u) + \beta f(v) \qquad u, v \in X, \ \alpha, \beta \in \mathbb{R},$$

and there exists M > 0 such that

$$|f(u)| \le M ||u||_X \qquad \forall u \in X.$$

Then we can show that f is continuous. Indeed, for each  $\{u_n\} \subset X$ ;  $u_n \to u$  in X,

$$|f(u_n) - f(u)| = |f(u_n - u)| \le M ||u_n - u|| \to 0.$$

We can define norm for  $X^*$ .

**Definition 1.9.** Let X be a Banach space and  $X^*$  be the set of bounded linear functionals on X. Then we define the norm on  $X^*$  as

$$||f||_{X^*} := \sup_{u \in X, ||u||_X = 1} |f(u)|.$$

 $X^*$  is called the dual space of X.

Obviously,  $X^*$  is also a Banach space. Similarly, we can define  $X^{**}$  as the set of bounded linear functionals on  $X^*$ .

**Proposition 1.2.** Let X be a Banach space and  $X^{**}$  be the dual space of  $X^*$  where  $X^*$  is the dual space of X. Then  $X^{**} \supset X$ .

**Proof.** Let  $u \in X$  and we can define  $u : X^* \to \mathbb{R}$ ,

$$u(f) := f(u) \quad (\forall f \in X^*)$$

Then we have that u is a linear functional of  $X^*$  and

$$|u(f)| \le M ||u||_X \le ||u||_X ||f||_{X^*} \quad (\forall f \in X^*)$$

Hence  $u \in X^{**}$ .

**Definition 1.10.** Let X be a Banach space. If  $X^{**} = X$ , then we call X a reflexive Banach space.

**Definition 1.11.** Let X be a Banach space. X is called separable if there exists  $\{\varphi_i\} \subset X$  such that  $\overline{\{\varphi_i\}} = X$  where  $\overline{A}$  is the closure of A in X.

**Theorem 1.1.** Let X be a separable Hilbert space and  $\{f_n\} \subset X^*$ . We assume that  $\{f_n\}$  is bounded, i.e., there exists M > 0 such that  $||f_n||_{X^*} \leq M$  ( $\forall n \in \mathbb{N}$ ). Then there exists a subsequence  $\{f_{n_j}\}_j$ ,  $f \in X^*$  such that

$$f_{n_j} \xrightarrow{*} f \quad (j \to \infty).$$

(*i.e.*  $f_{n_j}(\varphi) \to f(\varphi)$  for all  $\varphi \in X$ ).

**Proof** Since X is separable, there exists  $\{\varphi_i\} \subset X$  such that  $\overline{\{\varphi_i\}} = X$ . Then we get

 $|f_n(\varphi_1)| \le ||f_n||_{X^*} ||\varphi_1||_X \le M ||\varphi_1||_X \quad (\forall n \in \mathbb{N}),$ 

hence there exists a subsequence  $\{f_{1,n}(\varphi_1)\}_n$ ,  $\alpha^1 \in \mathbb{R}$  such that

$$\lim_{n \to \infty} f_{1,n}(\varphi_1) = \alpha^1.$$

Similarly, we can see that there exists a subsequence  $\{f_{2,n}(\varphi_2)\}_n$ ,  $\alpha^2 \in \mathbb{R}$  such that

$$\lim_{n \to \infty} f_{2,n}(\varphi_2) = \alpha^2$$

We write  $\{f_{n_j}\}_j$  as  $\{f_{n,n}\}$ . Then  $\{f_{n_j}\}_j$  satisfies that

$$f_{n_j}(\varphi_i) \to \alpha^i =: \hat{f}(\varphi_i) \quad (j \to \infty)$$

for each  $i \in \mathbb{N}$ . Since  $\overline{\{\varphi_i\}} = X$ , for each  $\varphi \in X$ , there exists  $\{\tilde{\varphi}_i\} \subset \{\varphi_i\}$  such that  $\tilde{\varphi}_i \to \varphi$  in X  $(i \to \infty)$ . We define  $f(\varphi) := \lim_{i \to \infty} \tilde{f}(\tilde{\varphi}_i)$ . Then  $f \in X^*$ .

**Theorem 1.2.** (*Riesz representation*) Let H be a Hilbert space and  $f \in H^*$ . Then there exists a unique  $v \in H$  such that

$$f(u) = \langle v, u \rangle \quad (\forall u \in H).$$

**Proof.** First, we consider the finite dimensional case,  $H = \mathbb{R}^n$ . Then  $f : \mathbb{R}^n \to \mathbb{R}$  is a linear function and  $\langle u, v \rangle = u \cdot v \ (\forall u, v \in \mathbb{R}^n)$ . We can rewrite the function f as a inner product. Next, we consider the infinite dimensional case. We define

$$\ker(f) := \{ u \in H; f(u) = 0 \}.$$

Since f is a linear, ker(f) is a linear subset and a closed set. In fact,

$$f(\alpha u + \beta v) = \alpha f(u) + \beta f(v) = 0$$

for each  $u, v \in \ker(f)$ ,  $\alpha, \beta \in \mathbb{R}$ , and for  $\{u_n\} \subset \ker(f); u_n \to u_0$ ,

$$0 = \lim_{n \to \infty} f(u_n) = f\left(\lim_{n \to \infty} u_n\right) = f(u_0),$$

thus  $u_0 \in \ker(f)$ . Therefore, we get

$$H = \ker(f) \oplus \ker(f)^{\perp}, \tag{1.17}$$

In other words, for  $u \in H$ , there exists a unique  $u_1 \in \ker(f)$  and  $u_2 \in \ker(f)^{\perp}$ such that  $u = u_1 + u_2$ . Let  $u^{\perp} \in \ker(f)^{\perp}$ , and we define

$$v := \frac{f(u^{\perp})u^{\perp}}{\langle u^{\perp}, u^{\perp} \rangle} \in \ker(f)^{\perp}.$$

From (1.17), for  $u \in H$ , there exists  $w \in \ker(f)$  and  $\alpha \in \mathbb{R}$  such that

$$u = w + \alpha u^{\perp}.$$

Then we calculate by using  $\alpha = \langle u, u^{\perp} \rangle / \langle u^{\perp}, u^{\perp} \rangle$ ,

$$f(u) = f(w + \alpha u^{\perp}) = f(w) + \alpha f(u^{\perp}) = \frac{f(u^{\perp})}{\langle u^{\perp}, u^{\perp} \rangle} \langle u, u^{\perp} \rangle = \langle u, v \rangle,$$

for all  $u \in H$ .