1 Variational Problem

1.1 One dimensional case

Let 2 := (a,b) be an open interval. We consider a functional I, a map from

a function space to R, defined by

oy [ (%) ar

where u : 2 = R. Our goal is to find a minimizer of I in the set
K :={ueCQ)NC’Q);u(a) = a,u(d) = 8}. 1
Definition 1.1. A function u € K is a minimizer of I on K if it satisfies

inf I(v) = I(u).

el

Remark 1.1. Since I is nonnegative, it is bounded from below. Hence there

exists infimum of I by continuity of real numbers.

Definition 1.2. Let C§°(2) be a set of smooth function whose support,

spty := {z € R;p(z) # 0},

18 compact and contained in €.

Proposition 1.1. Let p € C5°(Q2). Then there exists g > 0 such that (x) =0
for any x € {x € Q;dist(z, 00) < go}.

Example 1.1. A graph of ¢ € C§°(Q2) is shown in the below figure:

F/\ AR
0 V4 b

O Let ¢ € C§°(£2) and € be a small number. We assume that v is a minimizer
of I in K. Since C*(Q) N C°(Q) is a linear space and p(x) = 0 for all z € 99,
we obtain u + cp € K. Then

d(u+ep)\?
I = ) q
wiee) = [ (M) a
du\? du dy du\”
= — 2 | —=X 2 (= .
/Q(d:z:) dx + 2¢ Qd:vdq:dx—i_g /Q(dx) dx
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Fig. 1: Graph of v and u + ¢

The function ¢ — I(u + p) must have a local minimum at ¢ = 0. Moreover,
e+ I(u+ eyp) is a differentiable function in €. Hence we see that

~0. (1.1)

The left-hand side of (1.1) is called the first variation of I. We have by (1.1)

d
d_el(u +ep)

d
= —]
0 7 (u+ep)

e=0

d du\” du dy dp\°
= — — ) dx+2 ——d 2 — ] d
de (/ (dx) vee o dz dx ve /Q<da:) v
du dp
= 2
/d:r;dxdx

We rewrite the above equality as

e=0

du dp
(). 1.2
- [Febn =0 (e Cr@) (1.2
0 Additionally, we assume that u € C?(Q). From the integration by parts and
(1.2), we obtain

d*u du dy ~
—goda:—{ ] /%%dm‘—o (Vo € C5(9)).

Hence we have
d*u
da?
We call (1.2) the weak formulation of (1.3). (1.3) implies that u is a linear
function.

=0 inQ. (1.3)

"In mathematical sense, function space should be {u € W12(Q);with b.c.} so that a
minimizer of I exists where W12 is a Sobolev space with u,u,, € L*(Q).
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1.2 Multi dimensional case

Let 2 C R"™ be a domain and have a Lipschitz boundary. Similarly, we define
a functional

I(u) ::/|Vu|2dx,
0

and a function set
K :={ueC'(Q)NCQ):ulog = g}

where Vu := <‘9“ Ou ... Ou ), |Vu|? := Vu - Vu and g is a given function.

Ox1’ Oz’ ) Oxn

If  is a minimizer of I in K, then wu satisfies
—/ VuVedr =0 (Vo € C5°()).
Q

Moreover, if u € C?(£2), we obtain,

n_ 92
Au=0 1in (Au = 0 u) . (1.4)

L Jx?
i=1 ¢

1.3 Nwumerical calculation

The equation (1.4) is called Laplace’s equation. It is difficult for us to con-
sider multi-dimensional Laplace’s equation mathematically on arbitrary do-
main ). But the numerical calculation of this equation is not difficult.

First, let us consider it in the one-dimensional case:

d*u _
@:0 IHQI:(O,l)

uw(0) =a, u(l)=24.
Let Az :=1/N (N € N) and divide © into N intervals of equal length.

s

Q

Ax
| l 1 l 1
720/6 1 =1 '7?\:2 7:'\’\[—]'1\1—//



In this situation, we use the finite difference approximation

Pu, o u(r+ Az) = 2u(x) + u(r — Ax)'

gz = (Az)? (1.5)
If u € C*(Q), the quantity of (1.5) converges to % as Az — 0.
Uip1 — 2U; + U1 .
=0 =12+ ,N—-1 1.6
(Ax)z ? ) Y ? Y ( )
where u; := u(iAzx) (i = 0,1,---,N). We restrict the equation only on the

nodal points. We rewrite (1.6) as a system of linear equations of the form
Az = b:

2 -1 0 - -0 Uy o
-1 2 -1 0 --- 0 Us 0
o -1 2 0 --- 0 us 0
. . : =1 . (1.7)
o -~ 0 -1 2 -1 UN_2 0
0 0 0 -1 2 Un_1 &
From (1.6), for each i =1,2,--- | N — 1,
U1 — 2u; +ui—r = 0,
y = Y + Ui
i 9 .
Hence this formula shows (is the figure part of the sentence)
i1 5 i1
For each ¢+ = 1,2,--- | N — 1, u; is an average of u;;; and u;_;. Usually, a

system of linear equations can be solved by using the Gaussian elimination
method. This method is simple, but it may cause some troubles in a special
case.

In equation (1.7), since A is a positive definite symmetric matrix, we obtain
that

1(x,Ax) —(b,z). (1.8)

Solve Ax =b <= Find the minimizer of f(z) := 5



Definition 1.3. Matriz A is positive definite if all of its eigenvalues are posi-
tive.

Definition 1.4. Matriz A is a symmetric matriz if it satisfies A = A" where
At denotes the transpose of A.

Hence, to solve (1.7), we consider a minimization problem for f . To simplify,
we assume o = § =0 and N = 3. Then

f(x)zx’“( 2 _1>x (z € R?).

-1 2

Problem. Choose C' > 0 and plot the set {x; f(xz) = C} for C' = 1.

15

The Fig.2 is the level set of f. Let zop € RV~! be an initial point of numerical
computation. Firstly, calculate the gradient of f(z) at xy. It is perpendicular
to the level set. Secondly, draw a line passing xy with direction V f(z() and
find a minimum point z; on the line. We again calculate the gradient of f(x)
at x1. We repeat this procedure. It may take a long time to calculate in this
way. If A is an identity matrix, we can find the minimum in one iteration. We

RN—I

Fig. 3: Level set of f if A is an identity
Fig. 2: Level set of f matrix

expect that the convergence will be fast if A is similar to an identity matrix.
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Hence we find a matrix C' ~ A™! and solve CAz = Cb. In the equation (1.7),
we should choose

L 0 0
a1
0o L 0
C = >
0 0 1
AN —-1,N—1

But in other case, it isn’t easy to find such a matrix C.

1.4 Another way to derive the system of linear equa-

tions

The original problem is finding the minimizer of the functional

I(u)z/ﬂ(j—z>2d$ (©2:= (0,1)),

K :={ve () NC’Q);v(0) = a,v(l) = 4},

Let Az := 1/N (N € N) and divide © into N intervals of equal length. We
approximate the function u by a piecewise linear function:

on the set

i=N—-1 1=N

+ AT

—_

AT

N

Then we can calculate I of the approximating function, and introduce func-
tional I:

- e —a\ 2 T (@i — @)?
I((a1, a2, ;an-1) = (M) Az = Z % (1.9)
i=1 i=0

I will be the function f in (1.8) of the minimization problem.
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The graph of I is shown in the above figure. We can see that the graph is
quadratic. Hence, the partial derivative of I vanishes at a minimizer:

oI
=0 =1,--- ,N—1. 1.10
8ai ! ’ ’ ( )
Consequently we get
ai+1—2ai+ai_1:O 221,,N—1 (111)

We can change the above to (1.7).

1.5 One dimensional Finite elements method

Let us consider the weak formula

du dp
— [ ——dx = 57 (82)). 1.12
| G =0 (pecrw) (112)

We approximate u by using following base functions {p;}V as

N
U~ Z ;i (1.13)
i=0
o
1
] >
0 i=1




For each test function ¢; (j =1,---,N — 1), we get from (1.12)
d [ dp;
/Qda: (;a gp) dz

In the numerical calculation, we do not need to require that ¢; belongs to
Ce(Q2). Finally, we get

N
Zai/goggag-dxzo j=1--- N—-1.
i=0 /&

Forethermore, by using the formula

2 i=7

Ax
/ Sghdr={ “L i j=1 (1.14)
“ 0 i —j| > 2

we obtain (1.7).

1.6 Completeness of the Sobolev Space

We introduce a function space to prove the existence of a minimizer. Let
us confirm the definition of infimum. Let A C R be bounded from below. If
o € R satisfies that

(i) a<z (VzeA);
(i) Ve > 0, 3z. € Ast. a+¢e >z,

we call a the infimum of A and write = inf A := «. By (ii), there exists
{xn}neN C A S.t.

Tp > Tpy1 (VRnEN), z,—a (n— o).
Similary, there exists {v, }peny C K s.t.

I(vy,) > I(vp41) (VneN), lim I(v,) = inf I(v).

n—00 vell

It is important to note that the sequence {v, },en C K may not converge to a
function v belonging to .



Example For each n € N, we define f, : [0,1] — R as follows

2n2x if x €[0,1/(2n)),
fo(z) =< =2n?z+2n  if z €[1/(2n),1/n),
0 otherwise.

The graph of f, is shown below.

{fn}nen is a pointwise convergent function sequence. Pointwise means that for
each x € (Q, there exists f, € R such that

fol®) = fo (n— o0).
In this case, for each z € €2, we define

f(x):= lim f,(z)=0

n—o0

Also, calculating the integra of f,, we see that

i [ e =57 [ o

On the other hand, if {f,}nen is a uniformly convergent function sequence, it
is possible to exchange the limit and the integral. Uniform convergence means
that there exists a function f : {2 — R such that

sup [ fu(2) = f(2)] = 0 (n = o0).

xEQN
/ Fula) = F(a)lde

< / supl,(2) ~ f(2)]do

zeQ

= sup|fu(@) = S

— 0 (n—o0).

Then we have

/Q fulw)de — / f(2)da

IN




Hence

lim an(:c)d:c:/gf(x)dx.

n—o0

We define the function space
L*(Q) := {f € measurable;/gf(xfdx < oo} .
L?(9) is a linear space, and we define the L? inner product and the L? norm
()= [ f@)-g@)s, e = VD (e @)

Then L*(Q) is a Banach space with the above norm.

Definition 1.5. (weak derivative) For a function u € L. defined by

loc
L,.(Q) = {f € measurable; VK &€ Q,/K |f(z)|dx < oo} :

there exists a function v € L}, such that

a o0
/ & playula)dr = - / pla)v(x)de (Y € C2(Q)). (1.15)
Q dT; Q
We call v the weak derivative of u, and we write Qu/0x; := v.

If w is a differentiable function, we obtain (1.15) from the integration by
parts. Thus u has a weak derivative. We define the Sobolev space W12,

Definition 1.6. We define the Sobolev space
W'2(Q) := {f € measurable; f € L*(Q), f,, € L*(Q) (i =1,2,--- ,N)},
where f,, is a weak derivative of f. Sometimes we write H'(Q) as W12(Q).

Let us show that W12(Q2) equipped with the norm

(f.9) = /Q(f-gﬂLVf'Vg)dw? I fllwre@) = V{f ) (f,9 € WH(Q),

is a Banach space. Let {f,}nen C L*(Q2) be a Cauchy sequence. From the
definition of Cauchy sequence,

| frn = fmllwiz@) = 0 (n,m — o00).

Then
an - fm”LQ(Q) < an - meWlwz(Q) =0
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Ofn,  Ofm

ox; o0x;

as n and m to oo. Therefore {f, }nen and {0f,/0z;}nen is a Cauchy sequence
on L?(Q). From the completeness of L?*(Q), there exists f,v; € L*(Q) such
that

< an_meWL2(Q)—>O i:l)... ,N
QQ)

fu— 1, afn —v; in LQ(Q) (n — 00).
Z;
Then we have from the Cauchy-Schwarz inequality,
| e - [ o@f@is < [ |etw| 1) - sl
anigoxnxx Q(%iwx x)dr| < axlgow x x)|dz
g‘) 1= fli
TillL2(o
— (n — oo)

Hence,

0 0
tin [ ol e = [ St @)

Similary, we obtain

lim gp(ac)aifn(x)dx = /ng(x)vi(x)da:.

Thu v; is a weak derivative of f. From the above, W'?(Q) is a Banach space.

Example 1.2. Let f: (0,1) = R be a function definded by

(1 ze(1/2)
f(x)'_{o ze[1/2,1)

f is not weakly differentiable.

0 1/2 1

Proof. We assume that f is weakly differentiable. Hence there exists g €
L} .(0,1) such that

loc

/0 %SO(I)JC(I) dr = —/0 o(z)g(z)dx (Vo € C3°(0,1)). (1.16)
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We calculate the left-hand side of (1.16)

[ mewisain= | P2 e =y (3)

Therefore we have g = 0 in (0,1) \ {1/2}. But this is a contradiction. O

1.7 Hilbert Space

Definition 1.7. A Hilbert space H is a vector space endowed with an inner
product (-, ) that is complete in the associated norm || - || = /().

Clearly, a Hilbert space H is also a Banach space.

Definition 1.8. Let {u,} C H and u € H. {u,} is said to converge weakly
ueH (u, —u)if
(Un, ) = (u, )

as n — oo, for each p € H.

Let X be a Banach space with a norm || - ||x, and X* be set of bounded
linear functionals on X. From the definition, f € X* satisfies

flau+Bv) = af(u)+Bf(v) wveEX, a,B€R,
and there exists M > 0 such that
|f(w)] < M|lullx  YueX.

Then we can show that f is continuous. Indeed, for each {u,} C X; u, —
uin X,
| (un) = f(w)] = [f(un — w)| < MlJup — ull = 0.

We can define norm for X*.

Definition 1.9. Let X be a Banach space and X* be the set of bounded linear

functionals on X. Then we define the norm on X* as

[fllx= = sup  [f(u)].

ueX,||ullx=1
X* 1s called the dual space of X.

Obviously, X* is also a Banach space. Similarly, we can define X** as the
set of bounded linear functionals on X*.
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Proposition 1.2. Let X be a Banach space and X** be the dual space of X*
where X* is the dual space of X. Then X** D X.

Proof. Let u € X and we can define u : X* — R,

u(f) = f(u) (VfeX")
Then we have that u is a linear functional of X* and

u(f)] < Mjullx < flullx[|f]

x- (VfeX")
Hence v € X**. O

Definition 1.10. Let X be a Banach space. If X** = X, then we call X a
reflexive Banach space.

Definition 1.11. Let X be a Banach space. X 1is called separable if there exists
{p} € X such that {o;} = X where A is the closure of A in X.

Theorem 1.1. Let X be a separable Hilbert space and {f,} C X*. We assume
that { fn} is bounded, i.e., there exists M > 0 such that || f,|x+ < M (Vn € N).
Then there exists a subsequence { fy,};, f € X* such that

(i.e. fa; (@) = f() for all p € X).

Proof Since X is separable, there exists {;} C X such that {¢;} = X. Then
we get

[fa(e) < ([ fnllx-llerllx < Mlenllx (vn e N),

hence there exists a subsequence {f1,(¢1)}n, @' € R such that

X*

lim fi,(p1) = al.
n—oo

Similarly, we can see that there exists a subsequence { fo,.(2)}n, @ € R such

that

lim fo,(p2) = a?.
n—oo

We write {fn,;}; as {fun}. Then {f,,}; satisfies that
Jo, (0i) = o =t fp;)  (j — o0)

for each i € N. Since {¢;} = X, for each ¢ € X, there exists {®;} C {®;} such
that ¢; — ¢ in X (i — o0). We define f(p) := lim;_,o f(7;). Then f € X*.
U
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Theorem 1.2. (Riesz representation) Let H be a Hilbert space and f € H*.
Then there exists a unique v € H such that

f(u) = (v,u) (Yu € H).

Proof. First, we consider the finite dimensional case, H = R". Then f :
R™ — R is a linear function and (u,v) = u-v (Vu,v € R"). We can rewrite
the function f as a inner product. Next, we consider the infinite dimensional
case. We define

ker(f) :=={u € H; f(u) = 0}.
Since f is a linear, ker(f) is a linear subset and a closed set. In fact,

flau+Bv) = af(u) + Bf(v) =0

for each u,v € ker(f), a, 8 € R, and for {u,} C ker(f); u, — uo,

0= Jim, flu) = f (fim, ) = £
thus ug € ker(f). Therefore, we get
H = ker(f) @ ker(f)*, (1.17)

In other words, for u € H, there exsist a unique u; € ker(f) and uy € ker(f)*
such that u = u; + uy. Let ut € ker(f)+, and we define

_ )t

= Tl € ker(f)™.

From (1.17), for u € H, there exists w € ker(f) and «a € R such that

u:w—i-aul.

Then we calculate by using o = (u, ut)/{u*, ut),

flu) = flw+au) = f(w) +af(u’) =

forallu e H. O
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