
Introduction to Black-Scholes Theory

1 A random walk

We consider a random walk generated by the toss of a coin. If heads, we move

a distance ∆x along the x-axis, and if tails we move −∆x. We start at the origin

at time zero, and toss 1 coin every ∆t seconds until one second has elapsed. To

summarize,

step width = ∆x

number of coin tosses = n =
1

∆t
start position = 0 (the origin).

Here we want to take ∆t as small as possible, with the aim of understanding

the limiting case, as ∆t ↓ 0. Moreover, at the end of the experiment, we want

the distribution to have a fixed variance. For this requirement we first determine

conditions on ∆x and ∆t.

After 1 second, the probability of occupying the location (2k − n)∆x is 1
2n

(
n
k

)
.

Since the mean of the random variable is zero, the variance is given by

V =
n∑

k=0

(2k − n)2∆x2 · 1

2k

(
n

k

)
.

Simple calculations show that the variance satisfies

V =
n∑

k=0

(2k − n)2∆x2 · 1

2k

(
n

k

)
...

=
∆x2

2n

(
n22n − 4n(n − 1)2n−2

)
= ∆x2 · n =

∆x2

∆t
.

We can therefore set the variance by taking

∆x = σ
√

∆t,

which yields the variance = σ2 and standard deviation σ. From now we will write

dZ to signify the random walk with σ = 1 (similarly, we will rewrite ∆t = dt and

∆x = dx). Therefore we have a device for generating n = 1/dt coin tosses within

unit time, each of which changes our location by ±dx =
√

dt. (We call the limit

as dt → 0 a gaussian process).
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2 Modeling stock price changes

In this section we present a stock price model for building the foundation for

the derivation of the Black-Scholes equation.

Suppose we have a stock worth S dollars. We assume that the stock, during the

unit time, can be expressed as the sum of a gaussian process with variance σ and

an expected return rate (comparisons with the real market have shown that such

an assumption is often correct).

Hence during a small time dt the change in the stock price dS can be expressed:

dS = µSdt + σSdZ. (2.1)

Here we write
S : Stock price

µ : Expected earnings percentage (a constant)

σ : Volatility (a constant)

dZ : Random walk (defined in the previous section)

(2.2)

In this way, for a stock worth S(t) dollars at time t, at time t + dt we have

S(t + dt) = S(t) + dS = S(t) + µS(t)dt + σS(t)dZ, (2.3)

where dZ is the result of the coin toss that occurs each dt seconds:

dZ =

{
+dx = +

√
dt

−dx = −
√

dt.
(2.4)

3 The Black-Scholes equation

In this section we introduce the renowned Black-Scholes equation. We thus treat

a method for pricing monetary articles, known as options (option pricing). Our

targets are the following types of options.

1. European call option

The right to buy a specified article for M dollars, at a specified date.

2. European put option

The right to sell a specified article for M dollars, at a specified date.
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Both the strike price and expiration date are specified beforehand. The problem

is then to set the value v, of an option which expires at time T , for a stock that

has price S at this time. Once we have expressed the option’s value as a function

v(S, t) of the stock price S and time t, we will have rule for determining the value

of the option.

Write the differential of v as dv, that of S as dS, and dt for the differential of T

(here we must be careful with our calculations, as S also contains the elements of

our random walk). Then

dv = v(S + ds, t + dt) − v(S, t),

and we write the Taylor expansion of the first term and collect the lowest order

terms. Due to the relation dx =
√

dt, the we have the second order expansion:

dv =
∂v

∂t
dt +

∂v

∂S
dS +

1

2

∂2v

∂t2
dt2 +

1

2

∂2v

∂S2
dS2 +

∂2v

∂S∂t
dSdt. (3.1)

Using (2.1), we further expand dS in dt and dZ. Since dZ = ±dx is decided by

the coin toss, and dx =
√

dt, one has dZ2 = dt. Also, taking into account that

dZdt → 0, and dt2 → 0, collecting the first order terms in dt, one obtains the

celebrated Ito’s lemma:

dv =

(
∂v

∂t
+

1

2
σ2S2 ∂2v

∂S2

)
dt +

∂v

∂S
dS. (3.2)

Lemma 3.1. (Ito’s Lemma)

If a stock follows the Ito process dS = µSdt + σSdZ, then

dv =

(
∂v

∂t
+

1

2
σ2S2 ∂2v

∂S2

)
dt +

∂v

∂S
dS.

From the above, the motions of the stock (2.1) and the option (3.2) are clear.

With the random motions offsetting each other, the combination of these two

yields rather stable properties. Then the arbitrage-free assumption asserts that

secure assets can only mature with an expected rate of return µ. This is the

Black-Scholes equation, which we now proceed to derive.

We put a total of ∆ units of stock and an option of 1 unit into a portfolio Π,

(here, as is customary, the symbol ∆ describes an amount and is different from

that of the previous section, which described an increment). That is,

Π = ∆S − v,

from which the change in value of the portfolio is seen to be

dΠ = ∆dS − dv.
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Inserting expression (3.2) for dv in the above and rearranging yields

dΠ = ∆dS −
(

(
∂v

∂t
+

1

2
σ2S2 ∂2v

∂S2
)dt +

∂v

∂S
dS

)
.

Here if we always take ∆ = ∂v
∂S

, the random behavior from dS in the equation for

dΠ disappears:

dΠ = −
(

∂v

∂t
+

1

2
σ2S2 ∂2v

∂S2

)
dt.

An asset with the random property removed is called a risk-free asset (the oper-

ation of removing risk from the asset requires that ∆ = ∂v
∂S

for all time, and is

called dynamic hedging).

Under the arbitrage-free assumption, risk-free assets behave in the same way as

an ordinary bank account with interest rate r = µ, and so the following relation

must hold:

rΠdt = −
(

∂v

∂t
+

1

2
σ2S2 ∂2v

∂S2

)
dt.

Since Π = ∆S − v and ∆ = ∂v
∂S

, using Π = S ∂v
∂S

− v and rearranging yields the

Black-Scholes equation:

∂v

∂t
+

1

2
σ2S2 ∂2v

∂S2
+ rS

∂v

∂S
− rv = 0. (3.3)

4 Boundary and terminal conditions

1. The call option

Since the value of the option at expiration must agree with any profit for

selling the stock, we have the terminal condition

v(S, T ) = max(S − E, 0),

where E is the price at which the asset can be bought. Also, since the option

is worthless whenever S = 0, we have the boundary condition

v(0, t) = 0.

Moreover, as S → ∞, the option’s value asymptotes:

v(S, t) ∼ S − E (S → ∞).

Combining the above, the value of a European call option satisfies
∂v
∂t

+ 1
2
σ2S2 ∂2v

∂S2 + rS ∂v
∂S

− rv = 0

v(S, T ) = max(S − E, 0)

v(0, t) = 0

v(S, t) ∼ S − E (S → ∞).
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2. The put option

For the same reason as in the call option, the terminal condition here is

v(S, T ) = max(E − S, 0),

where E is the price at which the asset can be sold. If S = 0 at the time

of expiration, the value of the option is E, but before this time, due to

the arbitrage-free assumption, we must make the appropriate discount. The

corresponding boundary condition is then

v(0, t) = Ee−r(T−t).

Also, as S → ∞, the option value vanishes:

v(S, t) ∼ 0 (S → ∞).

Combining the above, the value of the European put option satisfies
∂v
∂t

+ 1
2
σ2S2 ∂2v

∂S2 + rS ∂v
∂S

− rv = 0

v(S, T ) = max(E − S, 0)

v(0, t) = Ee−r(T−t)

v(S, t) ∼ 0 (S → ∞).

In the above, we have used the following idea for determining the boundary

condition. Let r be a simple interest rate for the term. Then the boundary

condition at S = 0 is explained as a compound interest computation:

lim
n→∞

(
1 +

r

n

)n

= er.

In particular, if we assume that we purchase the option at a time t between

0 and T , then the remaining time T − t becomes a risk-free investment and,

due to the arbitrage-free assumption, we need to deduct the accumulated

interest.
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