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Abstract

We give a simple explicit example of a solution of the level set formulation of the crys-
talline curvature flow in two dimensions whose one level set fattens, leading to nonuniqueness
of the flow, and prove that it is the unique viscosity solution. The motivation of this note is
to illustrate the notion of viscosity solutions introduced recently by Y. Giga and the author.

1 Introduction

The purpose of this short note is to illustrate the notion of viscosity solutions of the crystalline
mean curvature flow introduced by Y. Giga and the author in [13,14]. We will construct an
explicit viscosity solution with a polygonal figure 8 initial data as an example of fattening in
this problem. Fattening refers to the essential nonuniqueness present in the mean curvature
flow where multiple evolutions are possible. A well-known example of this phenomenon in the
context of the standard mean curvature flow in two dimensions is the initially connected, self-
intersecting curve resembling the figure 8. During the evolution, the curve either splits at the
self-intersection into two disconnected components that contract to two distinct points, or it
separates at the self-intersection and evolves as a simple closed curve that contracts to a single
point; see [7,8].

The level set formulation of the mean curvature flow has a unique solution even when the
evolution of the curve is not unique. The level set describing the evolution of the curve however
develops a nonempty interior. That is, the level set fattens. Examples of fattening are discussed
for instance in [7,8,15,17,18], but none of them are given by an explicit formula.

On the other hand, the solutions of the crystalline curvature flow in two dimensions, reviewed
in Section 2, are in general polygonal curves whenever the initial curve is polygonal, and so we can
expect that the crystalline algorithm [22,23] for tracking such evolutions will give an explicit
solution. Ome such solution is constructed in Section 3, and the proof that it is the unique
viscosity solution of the level set formulation is presented in Section 3.2.

2 The crystalline mean curvature flow

The same way that one can understand the standard curvature flow as the formal gradient flow
of the curve length, one can consider the formal gradient flow ¢ — FE; of the anisotropic perimeter

P,(E) := /E)*Ea(u) dH? (2.1)

defined for sets of finite perimeter £ C R?, where v is the outer unit normal, o : S* — (0, 00)
expresses the anisotropy of the perimeter, and H' is the one-dimensional Hausdorff measure.



This formally yields the geometric evolution
V = —ko, (2.2)

where V is the normal velocity of the evolving boundary dF;. The term k. is the anisotropic
mean curvature of JF; corresponding to the anisotropy o. It is the first variation of the
anisotropic perimeter P, [2,4]. When the anisotropy o is nonsmooth so that the Wulff shape,
that is, the set with the smallest anisotropic perimeter for a given volume, is a convex polytope,
it is referred to as the crystalline mean curvature flow. This problem was introduced by An-
genent and Gurtin [3] and Taylor [21] as a model of growth of crystals. Solutions of the flow in
two dimensions are often evolving polygonal curves. Furthermore, the velocity of each segment
can be found quite easily as a constant inversely proportional to the length of the segment; see
(3.5). This motivates the crystalline algorithm [21-23]. It is a first order ODE system for the
positions of the individual segments. This algorithm provides an efficient way to find the evolu-
tion before the onset of singularities. When singularities occur, the evolution can sometimes be
continued in a natural way [1], but there are many examples where a much more care must be
taken as in the case of collisions and topological changes [16,19].

The viscosity solutions [10-14] provide one way to select a unique continuation when no
fattening occurs. It is also known that the crystalline algorithm generates a viscosity solution
when no singularities occur [9,11]. Another notion of generalized solutions was developed in
[5,6]. It is defined in terms of the signed distance function to the evolving curve (surface) and
relies for existence on the minimizing movements algorithm [2]. For a more detailed discussion
see [6,13] and the reference therein.

The level set equation for the crystalline curvature flow can be formally written as
up = |Vu|divVo(Vu) in R? x (0, 00), (2.3)

so that every level set of the auxiliary function w defines a curve that evolves under the ge-
ometric flow (2.2) [12]. The term div Vo(Vu) must be properly understood in the sense of a
subdifferential of the anisotropic total variation energy

E() = /R (Vi) d.

Here o : R? — [0, 00) is the positively one-homogeneous extension of o in (2.1) given as o(p) =
Iplo(p/Ipl), p # 0, and it is assumed to be convex. Any such function we shall call an anisotropy.
If o is furthermore given as the maximum of a finite number of linear functions,

o(p) = max ; - p,

we shall call it a crystalline anisotropy. In this case the vector field Vo(Vu) is in general not
continuous even if the level sets of u are smooth curves and therefore one cannot expect to be
able to express div Vo(Vu) as a function. In fact, this operator becomes nonlocal on flat parts
parallel to the sides of the Wulff shape.

In this note we will focus on the crystalline anisotropy given by the ¢! norm: o(p) := ||p[|; =
Ip1] + |p2|. Clearly we can take z; to be the four points (1,1), (—1,1), (1,—1) and (—1,—1).
These happen to also be the vertices of the Wulff shape W corresponding to o,

W=A{z:0°(x) <1} =A{z: [lz] <1},
where 0° : R? — [0, 00) is the convex polar

0°(z) ;= max{x-p:o(p) <1} = ||z,
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Figure 1: Left: Level sets {ug = 6} of the initial data for § = —1 (two points), —3 (two squares),
0 (thick figure ‘8’), and 1. Right: Level sets {u(-,#) = 0} (gray region) and {u(-,t) = 3} at
t = 0.45.

see [20]. The Wulff shape is the set with the smallest anisotropic perimeter given the volume
and in this case it happens to be a square.

It is important to understand for what kind of curves we can define the crystalline curvature.
In the case of the ¢! anisotropy, we can for instance consider the following class: A curve is reqular
for the anisotropy o = ||-||; if it is a Lipschitz regular boundary of an open set and consists only
of axes-aligned segments with positive length; see also [23].

3 The example of fattening
We consider the initial data
wo(@) = min (2 = (L)l = Llle + (L)) - 1,1),  z€R?

for the level set equation (2.3). Note that —1 < ug < 1. The zero level set {ug = 0} of ug is
the boundary of the union of two axes-aligned squares of side-length 2 touching at the origin,
centered at (1,1) and (—1,—1), respectively; see Figure 1. This is the polygonal figure ‘8’ shape.

Other level sets {ug = 0} for —1 < § < 1 are boundaries of unions of two squares of side-
length 2 + 26 with the same centers as above, but the squares are disjoint for —1 < 8 < 0, while
the intersection has a nonempty interior for 8 > 0.

The evolution of the initial polygonal curves {ug = 0} is therefore quite clear for € © :=
(—1,0)U(0,1) by the crystalline algorithm since these initial curves are regular, see above, with
respect to the anisotropy o = ||-||;. From these evolving curves, we will construct a level set
function u : R? x [0,00) — R and show that it is the unique viscosity solution of (2.3) with
initial data wug.

3.1 Crystalline algorithm

We will express the evolving curves as the boundaries of evolving open sets Ef C R? for § € O,
with initial data Ef = {ug < 0}.
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Figure 2: The boundary of Ef for 6 € (0,1) and 0 < t < t#,

Case -1 <60<0

E§ := {ug < 0} is the union of two disjoint squares

Eg :Q1+9(171)UQ1+9(*L*1)’ (31)

where Q,(c) := {x: ||z — ¢||,, <r}. Each square can be evolved independently. If we denote
the half-length of their sides as a = a(t), a(0) = 1 + 0, the crystalline curvature on the facet is
given as

1
Ko = —.
a
This follows from a general formula x, = (length of Wulff shape facet)/(length of facet), which
is rigorously written in (3.5) below. The velocity in the outer normal direction of each side of
the square happens to be the derivative a’. Therefore under the crystalline algorithm, a satisfies

1
ad ===, t>0,
a
a(0) =140,

with exact solution a(t) = /(1 + 0)? — 2t for t < t* := %, where t* = t*? is the extinction
time, that is, the time such that a(t) \ 0 as t ' t*. We continue the solution as a(t) = 0 for
t >t

Remark 3.1. In two dimensions, the flow with o = ||-||; reduces the area of each connected component
of the interior of the curve at a constant rate —8. Since the initial area of each component in this case is
4(1+ 6)?, the area becomes 0 exactly at t*.

We define
B} = Qu()(1,1) U Qupy (—1, —1), ~1<6<0,t>0.
Note that EY = ) for ¢ > t*.

Case 0 < <1

Ef = {up < 0} is again a union of two squares as in (3.1), however, this time they are not
disjoint. In fact Eg has 8 facets; see Figure 1. By the symmetry with respect to both diagonals,
we need to only consider the two of them in {(z1,z2) : 2 > |z1|}, namely

FS={(=0,20): 0 <mpy <146}, GY:={(x1,1+0):—0<z <1+6},



see Figure 2. The crystalline curvature is 0 on F09 by (3.5) and a positive constant depending
on the length of the facet on Gg. Therefore Fg does not move, only shortens, while Gg moves
in the direction of . We introduce b = b(t) to be the distance to the x1-axis of the facet GY,

FP = {(=0,19) : 0 < zo < b(t)}, GY:={(z1,b(t)): —0 < z1 < b(t)}.

We define the time ¢! = t%¢ as the time when b(t*) = 0, and Fg vanishes. At this time Efu is the
square QQy(0,0). After that the evolution is self-similar (homothetic) as in the previous case.
Let us find an expression for b(t) = b’(t). The crystalline curvature on GY is

2
"N 6

As before, b’ is the normal velocity of the facet GY and therefore b is the solution of

2
W=——""| t
g 10
b(0) = 2+ 6,

with formula
b(t) = /(2 + 20)% — 4t — 0.
We have b(t) = 0 at ¢! = t# := 1 4 26. After this time, E! is the square
E{ = Qu(t)(0),

where c(t) = P(t) = /2 —2(t — ), th <t < t' + ©. At t* == t! + & =1+ 20 4 162 the set
vanishes.

We have
AVU(-AD), 0<t<th=1+20,
E} = ¢ Qu1)(0), t<t<t =t +102=1+20+16%
0, t>t",

with A? = {(x1,22) : —0 < 21,29 < b(t)}. Asin Remark 3.1, we can find t* and ¢* by considering
the area of E and the fact that the area of Ef decreases with a constant rate —8.

We clearly have the following monotonicity:
E} c E! c EY forn<0,0<s<t, n6ecO.

In words, the sets are nonincreasing in time for each #, and they form a monotonically increas-
ing family in . This monotonicity of EY is clear from the explicit formulas, but it is also a
consequence of the comparison principle for the crystalline algorithm. In fact, it is rather easy
to see that

dist(E}, (EY)) > 6 —n = dist(E], (E§)°) whenever n < 6, 1,6 € ©. (3.2)

Moreover, due to the semigroup property we can always compare the evolving set with the
homothetic solution starting from Qs(c) centered at any point c.

Lemma 3.2. Whenever for some ¢ € R?, t >0 and 6 > 0 we have x € E! for all x € R? with
|z —c|l, <J, we can conclude that c € EY fort <s <t+ %.



We will now define the level set function
u(z, ) := inf ({9 €(-1,00U(0,1):z € Ef} U {1}). (3.3)

It is easy to see that —1 < u < 1 on R?x [0, 00), u(z,t) = 1 for ||z||,, > 3ort > limg_,1_ t* = 3.5,
and u is nondecreasing in time. Finally, u is Lipschitz in space with Lipschitz constant 1 by
(3.2).

In fact, we can write a rather explicit formula for u. To simplify the situation, we again take
advantage of the symmetries of u guaranteed by the symmetries of the initial data and give the
values of u(-,t) only on the set {x2 > |z1|}. Let us define

T34+ 2t +2— 2, Ty < (t—1)/2,
3 (mg + Az — 1)2 + 12t — 4) , otherwise.

It is not difficult to check that & is 1-Lipschitz continuous since at x93 = (¢ — 1)/2 both branches
are equal to x2. Note also that £(z2,t) <0 for 0 <xe <2y/1—tand 0<t<1= 0.

For 2o < (t —1)/2, 0 = &(x2, 1) is the solution of b?(t) = x9, that is, the point z might lie on
the edge GY. Otherwise 6 = &(x2,t) is a solution of ¢’(t) = x5, in which case z lies on the top
edge of ().(y). Let us combine this with the possibility that x lies on the edge Ff, which does
not move:

v(z,t) := min (max(—xl,ﬁ(xg,t)), 1).

On the other hand, z can lie on the boundary of Qq¢(1,1) or in the fattened zero set, which
we express by

w(x,t) := min (\/Hx — (L, DA +2t - 1,0).

Then we can write u for xo > |z1] as

w(.t) = {v(m,t), v(z,t) >0, (3.4)

w(z,t), otherwise.

u can be extended to the rest of R? by symmetry.

3.2 Viscosity solution

We claim that u is the unique viscosity solution of (2.3) with initial data .

The definition of viscosity solutions introduced in [13,14] can be written in n = 2 with
a(p) = |lpll; = |p1| + |p2| in the following simplified way. First we introduce admissible support
functions as the Lipschitz functions on R whose zero level set {¢) = 0} is the union of finite
number of bounded closed intervals of positive length. Here we should note that the definition
of admissible functions in [14] is potentially more general but the important point is that the class
considered here still gives the density result [14, Theorem 1.3]: For every Lipschitz continuous
function ¢ on R with {¢) = 0} compact and any p > 0 there exists an admissible support function
¢ with sign(z) < sign((z) < supj,_, <, signt(y). Note that signs := —1,0,1 whenever s <0,
s =0, s > 0, respectively. This result is a simple consequence of the structure of open subsets
of the real line.

For such an admissible support function v, we will define

A (x) = ’gf”; re {v=0}, (3.5)



where L(z) is the length of the connected component of {1) = 0} that contains z, and x(z) is
the sum of the signs of the two boundary points of the connected component. We define the
sign of the boundary point as 1 if ¢» > 0 in its neighborhood, and —1 otherwise. Therefore the
possible values of x(x) are —2, 0 and 2.

Definition 3.3. We say that an upper semi-continuous function u is a viscosity subsolution of
(2.3) whenever the following conditions are satisfied:

(i) If p(z,t) = Y(x1) + f(z2) + g(t), where ¢ is an admissible support function and f,
g € CYR), f'(#3) # 0, and u — (- — hey) has a global mazimum at (,t) for all h € R,
|h| small, and &1 € int {¢p = 0}, then

g'(&) = | (@2)|A[¥])(21) < 0.

(i2) Same as (i) but with subscripts 1 and 2 exchanged.

(ii) If o(z,t) = ¥(x) + g(t), where ¥ € Lip(R?) and g € C*(R), and u — ¢(- — h) has a global
mazimum at (&,t) for all h € R%, |h| small, and & € int {1p = 0}, then

gt <o.

(iii) If p(z,t) = f(x) + g(t), where f,g € CY(R), and u — ¢ has a global maximum at (2,%),
and Oy, f(&) # 0 # O, f(Z), then

gt <o.

A wiscosity supersolution is defined analogously by replacing upper semi-continuous, maxi-
mum and < by lower semi-continuous, minimum and >, respectively.

A function is a viscosity solution if it is both a viscosity subsolution and a viscosity superso-
lution.

Intuitively, u — ¢ having a maximum at (&,%) can be interpreted as the graph of ¢ touching
the graph of u from above. In the language of the level sets, the sub-level set of ¢ touches the
boundary of the sub-level set of v from inside. Note that in two dimensions we do not need to
consider essinf or esssup in tests (i1) and (iz) as written in [13,14] because A[¢] is constant on
each connected component of {¢) = 0}; see also [10,12].

Theorem 3.4. The function u defined in (3.3) and given explicitly in (3.4) is the wviscosity
solution of the crystalline curvature flow with initial data ug.

Proof. Let us show that u is a viscosity subsolution since this is more difficult. Indeed, u is
nondecreasing in time and hence tests (ii) and (iii) are automatic for a supersolution.
Let us get the simpler tests (ii) and (iii) out of the way first.

Test (ii). Suppose that ¢, ¥, g and (&,1) are as in Definition 3.3(ii). We need to show that
g'(t) < 0. Suppose therefore that ¢'(f) > 0. We can find § > 0 such that (x) = 0 = (%) for
|z — |, <6 and g(t) < g(f) for t € (t — 6,1).

Let us set 0 := u(Z, ). By the maximality of u — ¢ at (2,1), we get

u(z,t) < 0 — (@) + p(z,t) = 0+ g(t) — g(f) < 0,

for |z — &, <, t € (£=6,%). This can be interpreted in the following way: for every ¢ € ({—4,t)
and any 0 € (0 + g(t) — g(£),0) N © # ) we have z € Ef but x ¢ Ef for ||z — ||, < J. But
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taking t > £ — %, we reach a contradiction with Lemma 3.2 that states that the neighborhood
of # cannot disappear from E! that fast. Therefore ¢'() < 0.

Test (iii). Suppose now that ¢, f and ¢ is as in Definition 3.3(iii). There is ¢ > 0 such
that {x: f(z) = f(2), |z — 2| < e} is a C! curve with normal vector p := Vf(2) # 0 at 2.
Furthermore, as u(-,f) — f has a global maximum at &, we conclude that

u(:c,f) < u(iﬁ,f) + f(z) — f(2) in R?,
and so

{: f(x) < f(2), |&—2] <&} C {u(-f) < 8} = U, (3.6)

and & € OU té . We can express the sub-level sets as

0 ._ 0
vl= |J E.
0€O, 0<h

See Figure 3 for the boundaries of Uf for 0 < t < t*,

In the following, we say that an edge of A C R2, that is, a maximal line segment I' of
0A, is convex if A is convex in its neighborhood (.=). More precisely, there exists a convex
neighborhood C' of the edge I' such that A N C is convex. Similarly, the edge I' is concave if
A° N C is convex for some convex neighborhood C' (>). Finally, if the edge is neither, we say
that it is indeterminate (~). Similarly we will talk about convex (r) or concave () corners.

Therefore by (3.6) and the fact that p is not parallel to either of the axes, & can be located

only on the concave corners of the boundary of U té . More precisely, 0 (0,1], &1 = —&2 and

0<f<t =1+20. But then u(Z,t) = u(#,t) for t near £ because this corner does not move
and hence ¢/'(t) = 0.

Test (i1). It is time to tackle the more challenging test (i;). We will see that here we test the
horizontal facets, that is, the one dimensional edges parallel to the xi-axis. Suppose that ¢,
¥, f, g and (Z,%) are as in Definition 3.3(i;). We need to estimate the quantity A[](41) from
below, which means controlling the length of the component of {¢) = 0} containing #; and the
behavior of ¢ near its boundary points.

We again set 6 := u(&, ). The maximality of u — ¢ at (Z,1) is equivalent to

V(@1 4 v1) 4 fldE2 4 v2) + g(f) = 0(& +v,8) > u(@ +v,1) — 0+ (&, 1),
for v € R?, which after rearrangement using ¢(#1) = 0 reads
Y(@1+01) > u(@+0) — 0+ f(#2) — f(2+v2). (3.7)
We immediately have

P(z1) >0 whenever (z1,42) ¢ U? := {u(-,7) < 0}. (3.8)

Let s = f'(&2)/|f'(22)| be the sign of f/(Z2) # 0. Thereis § > 0 such that f(i2)—f(Z2—hs) >
0 for h € (0,6). Therefore by (3.7) we get

>0 on {x:(x1,22— hs) ¢ Uté for some h € (0,0)}. (3.9)
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Figure 3: Possible locations of & on the boundary of Uié for test (ij) denoted by thick line
segments.
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Figure 4: The graphs of ¢ (above) and u((-,%2),%) — 6 on a convex edge (left) vs. nonconvex
edge (right). The set {¢) = 0} is denoted by the bracketed interval.

On the other hand, by the assumption on the test function, we have (&1 + h,t) = 0 for
|h| < e for some € > 0 and therefore (3.9) yields

{Z4v:|n|<e, —5<svg<0}CUf.

This implies that & must lie on one of the horizontal edges of the boundary of Uf away from
the convex corners; see Figure 3.

If Z is on a convex edge, both boundary points of the component of {¢) = 0} containing z
are positive due to (3.8) and (3.9), and hence x(Z) = 2; see Figure 4(left). Furthermore, the
length of the component is smaller than the length ¢ of the edge by (3.9). We conclude that
A[(3) > 2.

On the other hand, if £ does not lie on a convex edge, we can only conclude that at least
one boundary point of the component of {¢) = 0} has a positive sign and therefore x(&) > 0;
see Figure 4(right). This gives us only that A[y](z) > 0.

To estimate the time derivative ¢'(), we choose & € C'(I,R?) and I a neighborhood of #
such that &(t) € OUf for t € I. Then

u(€(t),1) = p(€(1),1) < ul@, 1) — o(#,1) = 0 — p(£(E), D).
But u(£(t),t) = 6 and therefore t — (£(t),t) has a minimum at £. In particular,

0= Fo&),t)],—; = g'(t) + f'(&2)&5(D).

&=

Now s&, (f) just happens to be the outer normal velocity of the horizontal edge of Ufé on which
& lies. So if Z lies on a nonconvex edge, we can simply choose &(¢) = & since such edges do not
move by construction, and so we have

g'(£) = 0 < |f'(&2)|A[Y](31).



On the other hand, on the convex edges, we have by the crystalline algorithm s&’(f) = —%,

where /£ is the length of the edge. Therefore we conclude that if & is on the convex edge,
R R A 2 . R
g'(t) = = (@2)Is€'(t) = [ /'(22)|5 < 1f'(2)[A[)(E1).

Test (iz). This test can be verified as test (i;) by symmetry.

This concludes the proof that w defined in (3.3) and given by the explicit formula (3.4) is
a viscosity subsolution of the level set equation (2.3) in the sense of Definition 3.3. The proof
that it is a supersolution is similar in (i;) and (iz), and trivial in cases (ii) and (iii) as u is
nondecreasing in time. O
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