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Abstract. We present two types of self-similar shrinking solutions of positive
genus for the crystalline mean curvature flow in three dimensions analogous
to the solutions known for the standard mean curvature flow. We use them
to test a numerical implementation of a level set algorithm for the crystalline
mean curvature flow in three dimensions based on the minimizing movements
scheme of A. Chambolle, Interfaces Free Bound. 6 (2004). We implement a
finite element method discretization that seems to improve the handling of
edges in three dimensions compared to the standard finite difference method
and illustrate its behavior on a few examples.

1. Crystalline mean curvature flow

The understanding of the evolution of small crystals has been a challenging prob-
lem of material science and mathematical modeling. In this regime, the evolution
seems to be governed by the surface energy, whose effects are usually modeled by
mean curvature terms. Due to the lattice structure of a typical crystal, the surface
energy density is anisotropic. In fact, it is postulated that the optimal shape (Wulff
shape) is a convex polytope and such anisotropies are called crystalline. This causes
difficulties for the definition of an anisotropic (crystalline) mean curvature and a
suitable notion of solutions of the resulting surface evolution problem, and makes
the development of an efficient numerical method challenging.

The crystalline mean curvature was introduced independently by S. B. Angenent
and M. E. Gurtin [5] and J. E. Taylor [57] to model the growth of small crystals, see
also [11, 37]. The surfaces of solid and liquid bodies have a surface energy, which
is usually expressed as the surface integral of a surface energy density σ : Sn−1 →
(0,∞) over the boundary of a set E ⊂ Rn, representing the body,

F(E) :=

∫
∂E

σ(ν) dS,

where ν : ∂E → Sn−1 is the unit outer normal of E. Here n is the dimension, usually
2 or 3 in applications. For many materials, especially liquids, σ is given by the
surface tension coefficient and is therefore constant on the unit sphere Sn−1. This
surface energy is a manifestation of the fact that the atoms or molecules forming
the body have a smaller interaction energy when surrounded by the particles of the
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Figure 1. Left: Crystal of atoms on a regular lattice. Right: The
1-level set of the associated surface energy density σ and its Wulff
shape W.

same kind. Liquids, typically, do not have any preferred direction in the distribution
of particles, and therefore the surface energy density is isotropic.

The situation is quite different for crystals. Let us give a simplified illustration.
If we suppose that the atoms are distributed along the regular square lattice in two
dimensions, every atom inside the body has exactly four neighbors with which it
creates chemical bonds, see Figure 1. On the surface, however, some of these bonds
are broken where a neighbor is missing and the surface energy is proportional to
the number of the broken bonds. This number is given in terms of the taxicab (ℓ1)
length of the surface, not the usual Euclidean length. In particular, in this case
σ(ν) ∼ ∥ν∥1 := |ν1|+|ν2|, where ν is the macroscopic unit outer normal. This is the
basic motivation for the introduction of nondifferentiable surface energy densities.

For convenience, we will assume that σ is positively one-homogeneously extended
from Sn−1 to Rn as

σ(p) = |p|σ( p|p| ), p ∈ Rn \ {0},(1.1)

σ(0) = 0, where |p| := (
∑
i |pi|2)1/2 is the usual Euclidean norm.

If σ is convex on Rn and σ(p) > 0 for all p ∈ Rn\{0}, we call it an anisotropy. We
are in particular interested in anisotropies σ that are piece-wise linear, for instance
the ℓ1-norm σ(p) = ∥p∥1 :=

∑
i |pi|. Such anisotropies will be called crystalline

anisotropies.
The optimal shape of the crystal, that is, the shape with minimal surface energy

for a given volume, is a translation and scaling of the Wulff shape

W := {x : x · p ≤ σ(p), p ∈ Rn},

see [56].
The evolution {Et}t≥0 of a body driven by the dissipation of the surface energy

then leads to a formal gradient flow

V = β(ν)(κσ + f) on ∂Et,(1.2)

where V is the normal velocity of the surface ∂Et, f = f(x, t) is a given external
force, and β : Sn−1 → (0,∞) is a mobility. Finally, −κσ is the first variation of the
surface energy F at Et. κσ is usually called the anisotropic mean curvature of the
surface.
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If σ ∈ C2(Rn \ {0}) and {p : σ(p) < 1} is strictly convex, then it is well-known
[26] that the anisotropic mean curvature can be evaluated as

κσ = −div∂E(∇σ(ν)),

where div∂E is the surface divergence on ∂E.
When σ is crystalline, the situation is significantly more complicated. In partic-

ular, even if ∂E is smooth, ∇σ(ν) might be discontinuous (or not even defined) on
parts of the surface. Therefore κσ might not be defined, or might not be a function.

Instead, following for example [11], we define the subdifferential of σ as

∂σ(p) := {ξ ∈ Rn : σ(p+ h)− σ(p) ≥ ξ · h, h ∈ Rn},

where ξ · h is the usual inner product on Rn. Note that ∂σ(p) is a nonempty
compact convex subset of Rn. We replace ∇σ(ν) by a vector field z : ∂E → Rn,
usually called a Cahn-Hoffman vector field, that is a selection of ∂σ(ν(x)) on ∂E,
that is, z(x) ∈ ∂σ(ν(x)), x ∈ ∂E. However, now there are multiple choices of z
which potentially lead to different values of κσ = −div∂E z. It turns out that a
reasonable choice is a vector field zmin that minimizes ∥−div∂E z + f∥L2(∂E). The

crystalline (mean) curvature is then defined as

κσ := −div∂E(zmin).

Such a choice is motivated by the standard theory of monotone operators due to
Y. Kōmura and H. Brézis [16,41]. Furthermore, since the Euler-Lagrange equation
of the minimization problem is ∇(−div∂E z+ f) = 0, this choice yields κσ+ f that
is constant, if possible, on flat parts, or facets, of the crystal parallel to the flat parts
of the Wulff shape W. Therefore facets are usually preserved during the evolution,
as expected. However, κσ might be even discontinuous on facets, and then facet
breaking or bending occurs, see [14] and Figure 14, Figure 15. This poses a serious
difficulty for introducing a suitable notion of solutions for this problem. Since κσ
is itself given as a solution of a minimization problem, it is in general difficult to
evaluate it, except in special circumstances. Moreover, κσ is a nonlocal quantity
on the facets of the crystal as the following example shows.

1.1. Example. Consider the cubic anisotropy σ(p) = ∥p∥1 :=
∑n
i=1 |pi| and sup-

pose that the initial shape is the cube centered at 0 with side-length L0 > 0, β ≡ 1.
Let us try to find {Et}t≥0. It is not difficult to see that for a cube QL = (−L2 ,

L
2 )
n,

L > 0, the vector field z(x) = x
σ◦(x) is a Cahn-Hoffman vector field on ∂QL, where

σ◦(x) := sup {x · p : σ(p) ≤ 1}. Here σ◦ is the convex polar of σ and it is the dual
norm of σ, σ◦(x) = ∥x∥∞ := max1≤i≤n |xi|, see [52]. In particular, σ◦(x) = L

2 on

∂QL. Therefore div∂QL
z = 2

L (n−1). Since it is a constant on the facets, z actually
minimizes ∥−div z∥L2(∂QL) among all Cahn-Hoffman vector fields, and therefore

κσ = − 2
L (n−1) if f ≡ const. We deduce that, if 2

L0
(n−1) ≥ f ≡ const so that solu-

tion is shrinking, the solution of (1.2) is {Et}t≥0, Et = QL(t), where L(0) = L0 and

L′ = − 2
L (n− 1) + f . When f = 0, the unique solution is L(t) =

√
L2
0 − 4(n− 1)t.

At the extinction time t1 :=
L2

0

4(n−1) the cube vanishes.

If the forcing term f is strong enough, the crystal will grow. However, it will
only stay a cube as long as the velocity of corners is less than f since β ≡ 1. If the
speed of the corners is bigger, the corners will round up, as can be easily seen by
the comparison principle. See for example [32] and references therein.



4 N. POŽÁR

Solutions of the crystalline mean curvature flow. Introducing a notion of solutions
for (1.2) with the crystalline anisotropy have been a challenging problem. In two
dimensions, if f is constant on facets, the situation is somewhat simpler since κσ
is constant on facets of the crystal parallel to the facets of the Wulff shape W.
Therefore if the initial shape is a polygon with edges parallel to edges of the Wulff
shape, the facets will move without breaking or bending. Their evolution can
be tracked by the crystalline algorithm [57], which also yields efficient numerical
methods. However, these methods cannot treat evolutions that are not strictly
faceted. For fully general situations, the level set method was successfully used to
introduce a notion of viscosity solutions to (1.2) in two dimensions by M.-H. Giga
and Y. Giga [27–29], and a numerical algorithm was developed by A. Chambolle [17]
and further extended to the crystalline case by A. Oberman, S. Osher, R. Takei
and R. Tsai [48].

In three dimensions, the situation is significantly more complicated by the pos-
sible bending or breaking of facets. There is an extensive number of publications
that is beyond the scope of this paper, for instance [12–15], and [11] for an in-
troduction to the topic and references. Recently, A. Chambolle, M. Morini and
M. Ponsiglione [19], introduced a well-posed notion of solutions for the particular
velocity law V = σ(ν)κσ. In a subsequent paper with M. Novaga [18], they gener-
alized the theory to V = β(ν)(κσ + f), where β is an anisotropy and f = f(x, t)
is a Lipschitz continuous function. They define solutions using the signed distance
function to the evolving set, which is required to be a solution of a certain PDE in
a sense of distributions, and prove the existence of such a solution using the min-
imizing movements algorithm. Independently, Y. Giga and the author introduced
a well-posed notion of viscosity solutions for the level set formulation of (1.2) in
the fully general form V = F (ν, κσ + f) where the continuous nonlinearity F is
nondecreasing in the second variable, but with constant f and for bounded crys-
tals [33, 34]. See also Section 2.1. It was shown in [18] that both of these notions
coincide whenever they both apply.

As for the available numerical results, published results concerning the purely
crystalline anisotropy so far seem to only treat the two dimensional evolution. How-
ever, the algorithm proposed in [17, 48] generalizes naturally to three dimensions,
and can easily accommodate a general external force as explained in Section 3.
We present some of the results of this implementation below. Let us also mention
the three dimensional results of J. W. Barrett, H. Garcke and R. Nürnberg [6–8],
who develop a parametric finite element method for the anisotropic mean curvature
flow and apply it to the Stefan problem with Gibbs-Thomson law that features an
almost-crystalline, but still smooth, anisotropic curvature. This method does not
seem to be able to handle topological changes. For a flow with topological changes
their phase field method [9, 10] is available. See also [25] for a survey of numerical
approaches.

Self-similar solutions. The study of self-similar solutions of the classical mean cur-
vature flow has been important for the understanding of the singularities of the flow.
In two dimensions, it is known that any simple initial closed curve will become a
boundary of a convex set in a finite time and therefore the only compact embedded
self-similar solution is the circle [24,36].

In three dimension the situation is more interesting. It is known that the sphere is
the only convex self-similar solution [38]. The first embedded nonconvex self-similar
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solution was the “shrinking doughnut” solution constructed by S. B. Angenent [4].
This solution can be used to rigorously show the neck-pinching singularity starting
with a dumbbell-shaped initial data. Self-similar solutions of higher genus were
discovered numerically by D. L. Chopp [21], but to the author’s knowledge their
existence have not been proven rigorously. The construction of the first higher-
genus embedded self-similar solution was done by X. H. Nguyen [44–46], but this
solution is different from the one found by Chopp in [21].

The behavior is more complex in the crystalline case. There are convex self-
similar solutions other than the Wulff shape even in two dimensions. For example,
any axes-aligned rectangle will generate a self-similar solution of the crystalline
curvature flow with the ℓ1 anisotropy. For “non-rectangular” even anisotropies, the
Wulff shapes in two dimensions are stable [54]. The stability of the Wulff shape
solution in three dimensions was considered in [47], with more examples of non-
Wulff convex solutions. There are also examples of nonconvex self-similar solutions
in two dimensions [40]. For a construction of self-similar solutions in a sector see
[30]. The self-similar solutions of positive genus constructed below appear to be
new.

Main results and the outline. We construct the crystalline shrinking doughnut
in Section 2.2 and the crystalline sponge-like solution in Section 2.3. In Section 3
we present an implementation of a numerical algorithm for the crystalline mean
curvature flow and test its accuracy using the self-similar solutions.

2. Self-similar solutions with positive genus

It is known that the solution of V = σ(ν)κσ with initial data given by the Wulff
shapeW of the anisotropy σ is self-similar up to the vanishing time, see Example 1.1.
In this section we construct self-similar solutions of the anisotropic or crystalline
mean curvature flow with positive genus. One is a torus-like solution, analogous
to the solution constructed by S. B. Angenent for the isotropic mean curvature
flow [4], and the other is a sponge-like solution of genus 5, similar to the solution
for the isotropic mean curvature flow discovered numerically by D. L. Chopp [21].
Such solutions are useful for understanding possible singularities of the flow, for
instance showing that a neck-pinching occurs [4]. Furthermore, the solutions can
be constructed explicitly for certain anisotropies and may be therefore useful for
testing numerical methods, as we will do in Section 3.4.

2.1. Notion of solutions using the level set method. We need to first clarify
what we mean by a solution of the crystalline mean curvature flow (1.2). The level
set method for the mean curvature flow was introduced and developed in [20,23,49].
The basic idea is to introduce an auxiliary function u : Rn× [0,∞), whose evolution
of every level set {{x ∈ Rn : u(x, t) < c}}t≥0, c ∈ R, satisfies the velocity law (1.2).
It is easy to see [26] that in this case

V = − ut
|∇u|

, ν =
∇u
|∇u|

, and κσ = −div(∇σ(∇u)).

Therefore u formally satisfies the equation

− ut
|∇u|

= β

(
∇u
|∇u|

)
(−div(∇σ(∇u)) + f) in Rn × 0.(2.1)
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If σ is a crystalline anisotropy, ∇σ might be discontinuous and therefore the
differential operator on the right-hand side is very singular. In fact, it is a nonlocal
operator on the flat parts of the surface of the crystal parallel to the flat parts of the
Wulff shape. Therefore this equation does not fit within the classical framework of
viscosity solutions for geometric equations [20, 23]. The extension of the viscosity
theory to (2.1) had been a challenging open problem. In one dimension, which also
covers two-dimensional crystals, the theory was developed by M.-H. Giga, Y. Giga,
P. Rybka and others [27,29,31]. Y. Giga and the author recently introduced a new
notion of viscosity solutions for (2.1) with f independent of the space variable that
applies to the crystalline anisotropy [33,34]. This notion is well-posed for bounded
crystals and stable with respect to a regularization of the anisotropy, that is, with
respect to the approximation of the crystalline curvature by smooth anisotropic
curvatures. The main idea is to restrict the space of test functions to faceted test
functions for which it is possible define the operator div[∇σ(∇u)] as the divergence
of a minimizing Cahn-Hoffman vector field z ∈ ∂σ(∇u) as explained above. The
solutions constructed below are viscosity solutions of the level set formulations.

2.2. The shrinking doughnut. In [4], S. B. Angenent showed the existence of a
doughnut-like self-similar shrinking solution for the isotropic mean curvature flow
in dimensions n ≥ 3.

An analogue of this solution can be also constructed in the anisotropic case. Let
us fix a dimension n ≥ 3. We consider a “cylindrical” anisotropy

σ(p) := σ̃(p′) + |pn|, p = (p′, pn) ∈ Rn,

where σ̃ is an even anisotropy on Rn−1 (not necessarily crystalline), i.e., we require
that σ̃(−p′) = σ̃(p′). We define the mobility

β(p) := σ̃(p′) + µ|pn|, p = (p′, pn) ∈ Rn,(2.2)

where µ > 0 is a given constant. We will see later that we must take µ = 1
2 for

n = 3 to get a self-similar solution. Note that

σ◦(x) = max(σ̃◦(x′), |xn|), x = (x′, xn) ∈ Rn,

where σ̃◦(x′) := sup
{
x′ · p′ : p′ ∈ Rn−1, σ̃(p′) ≤ 1

}
is the convex polar of σ̃, see for

instance [52] for this and other convex analysis results.
We consider the anisotropic mean curvature flow

V = β(ν)κσ.(2.3)

Let R > r > 0, h > 0 be real parameters. Define the set

Tr,R,h := {x = (x′, xn) ∈ Rn : r < σ̃◦(x′) < R, |xn| < h}.

This is a “torus” with the hole aligned with the xn-direction, see Figure 2. We will
use this set to construct a self-similar evolution

Et :=

{
Tr(t),R(t),h(t), 0 ≤ t < t∗,

∅, t ≥ t∗,

given appropriate functions r(t), R(t) and h(t), where t∗ is the extinction time.
Let us first calculate the anisotropic curvature on the surface of Tr,R,h. We will

split the surface Γ = ∂Tr,R,h into (o) the outer surface Γo where σ̃◦(x′) = R, (i) the
inner surface Γi where σ̃

◦(x′) = r, and (s) the side facets Γs with |xn| = h.
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2R
2r

2h

Figure 2. Torus Tr,R,h for n = 3 and σ̃(p′) = |p′|1 (left), and
with hexagonal anisotropy (right).

To compute the anisotropic curvature, we need to find a Cahn-Hoffman vector
field z : Γ → Rn on the surface such that z(x) ∈ ∂σ(ν(x)) for Hn−1-a.e. x with
minimal ∥divΓ z∥L2(Γ). It can be shown that divΓ z minimizes the L2 norm exactly

when divΓ z is constant on the flat parts of Γ, see [11].
One such z can be given explicitly as

z(x) =
(
g(σ̃◦(x′))x′,

xn
h

)
, x = (x′, xn) ∈ Γ,(2.4)

where

g(s) := as−n+1 + b,

with

a = −R
n−2rn−2(R+ r)

Rn−1 − rn−1
, b =

Rn−2 + rn−2

Rn−1 − rn−1
.

The constants a and b are chosen so that g(r)r = −1 and g(R)R = 1. Since r < R
and g(s)s is increasing in s as a < 0, we conclude that −1 < g(s)s < 1 for r < s < R.
In particular,

σ̃◦(g(σ̃◦(x′))x′) ≤ 1⇔ g(σ̃◦(x′))x′ ∈ ∂σ̃(0) for all x = (x′, xn) ∈ Γ.(2.5)

Furthermore,

g′(s)s+ (n− 1)g(s) = (n− 1)b

and thus

divx′(g(σ̃◦(x′))x′) = g′(σ̃◦(x′))x′ · ∇σ̃◦(x′) + (n− 1)g(σ̃◦(x′))

= g′(σ̃◦(x′))σ̃◦(x′) + (n− 1)g(σ̃◦(x′)) = (n− 1)b
(2.6)

whenever ∇σ̃◦(x′) exists, where we used that x′ · ∇σ̃◦(x′) = σ̃◦(x′), see [52].
Let us check that z is indeed a Cahn-Hoffman vector field on Γ. A convenient

approach is to write Γ as the level set of a Lipschitz continuous function. Consider

ψ(x) = max(r − σ̃◦(x′), σ̃◦(x′)−R, |xn| − h), x = (x′, xn) ∈ Rn.(2.7)

Clearly ψ is Lipschitz, Γ = {x : ψ(x) = 0} and Tr,R,h = {x : ψ(x) < 0}. ∇ψ is an
outer normal vector of Γ (with respect to Tr,R,h) and exists Hn−1-a.e. on Γ. Since
∂σ is positively zero-homogeneous, it is enough to show that z(x) ∈ ∂σ(∇ψ(x))
Hn−1-a.e. x ∈ Γ.
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Let ri Γj denote the relative interior of the surface Γj . Thus suppose that x ∈ Γ
such that ∇ψ(x) exists. We have three cases:

x ∈ ri Γo: In a neighborhood of such a point, we see that ψ(y) = σ̃(y′) − R,
and so in this case we have ∇ψ(x) = (∇σ̃◦(x′), 0), from which we deduce

z(x) =

(
x′

σ̃◦(x′)
,
xn
h

)
∈ ∂σ̃(∇σ̃◦(x′))× [−1, 1] = ∂σ(∇ψ(x)).

x ∈ ri Γi: This can be handled as the previous case, recalling that σ̃ is even

and thus − x′

σ̃◦(x′) ∈ ∂σ̃(−∇σ̃
◦(x′)).

x ∈ ri Γs: Now we are on the top or the bottom flat facet, ψ(y) = |yn| − h in

the neighborhood of this point, and so ∇ψ(x) =
(
0, xn

|xn|

)
. Thus, recalling

(2.5), we deduce

z(x) =

(
g(σ̃◦(x′))x′,

xn
|xn|

)
∈ ∂σ̃(0)×

{
xn
|xn|

}
= ∂σ(∇ψ(x)).

We have proved that z defined in (2.4) is a Cahn-Hoffman field on Γ.
Now we show that divΓ z is constant on the flat parts of Γ, and hence it minimizes

∥divΓ z∥L2(Γ). The surface (tangential) divergence divΓ z(x) for x ∈ Γ can be

computed easily using the level set method by constructing an extension z̄ of z
away from the facet such that z̄ ∈ ∂σ(∇ψ) a.e. in a neighborhood of x ∈ Γ so that
div z̄(x) exists. Then we have divΓ z(x) = div z̄(x), see [26].

Following the above verification that z is a Cahn-Hoffman vector field, we can
construct the extension z̄ in a neighborhood of x ∈ Γ in the following three cases
in the following way:

x ∈ ri Γo: Here we can simply take z̄(y) =
(

y′

σ̃◦(y′) ,
yn
h

)
which yields

divΓ z(x) = div z̄(x) =
n− 2

R
+

1

h
,

if the divergence exists, where we followed the computation in (2.6) with
g(s) = 1

s .
x ∈ ri Γi: Similarly to the previous situation, we may take

z̄(y) =

(
− y′

σ̃◦(y′)
,
yn
h

)
,

which yields

divΓ z(x) = div z̄(x) = −n− 2

r
+

1

h
if the divergence exists.

x ∈ ri Γs: Here we may take z̄(y) =
(
g(σ̃◦(y′))y′, yn|yn|

)
, yielding

divΓ z(x) = div z̄(x) = (n− 1)b

using (2.6).

Since divΓ z is constant on the flat parts of the surface, we deduce that it minimizes
the L2 norm among all Cahn-Hoffman vector fields and therefore we can define
κσ = −divΓ z.

Let us now find the normal velocity V of the surface Γt = ∂Tr(t),R(t),h(t) where

r(t), R(t) and h(t) are some C1 functions satisfying 0 < r(t) < R(t), 0 < h(t). It is
straightforward to use the level set method. Let ψ(x, t) be the function defined in
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(2.7) with the time dependent parameters r(t), R(t), h(t) above. Let us fix t and
x ∈ Γt so that ψt(x, t) and ∇ψ(x, t) are defined. We can again consider three cases

and use the formula V (x, t) = − ψt

|∇ψ| (x, t) [26]:

V (x, t) =


R′(t)

|∇σ̃◦(x′)| , x ∈ ri Γo,

− r′(t)
|∇σ̃◦(x′)| , x ∈ ri Γi,

h′(t), x ∈ ri Γs.

(2.8)

To relate V to κσ using the law (2.3), it is left to compute β(ν) on Γ. Using

the level set method again, ν = ∇ψ
|∇ψ| whenever ∇ψ exists and is nonzero [26], and

therefore

ν(x) =


(∇σ̃◦(x′),0)
|∇σ̃◦(x′)| , x ∈ ri Γo,

− (∇σ̃◦(x′),0)
|∇σ̃◦(x′)| , x ∈ ri Γi,

(0, xn

|xn| ), x ∈ ri Γs.

(2.9)

Recalling β given in (2.2) and that σ̃(±∇σ̃◦(x′)) = 1 whenever ∇σ̃◦(x′) exists [52],
we deduce

β(ν(x)) =

{
1

|∇σ̃◦(x′)| , x ∈ ri Γo ∪ ri Γi,

µ, x ∈ ri Γs.
(2.10)

Relating the anisotropic curvature κσ = −divΓ z with (2.8), (2.9) and (2.10) via
(2.3), we must have

R′ = −n− 2

R
− 1

h
,

r′ = −n− 2

r
+

1

h
,

h′ = −(n− 1)µ
Rn−2 + rn−2

Rn−1 − rn−1
.

(2.11)

For the evolution to be self-similar, we therefore need( r
R

)′
= 0 =

(
h

R

)′

.

Thus there are constants γ ∈ (0, 1) and λ > 0 such that

r = γR, h = λR.

Plugging this into (2.11) and multiplying each equation by R, we get

RR′ = −(n− 2)− 1

λ
(2.12a)

= −n− 2

γ2
+

1

λγ
(2.12b)

= − (n− 1)µ

λ
· 1 + γn−2

1− γn−1
.(2.12c)

From (2.12a) and (2.12b), we obtain

λ =
γ

(n− 2)(1− γ)
.(2.13)
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On the other hand, (2.12a) and (2.12c) yield

λ =
1

n− 2

(
(n− 1)µ

1 + γn−2

1− γn−1
− 1

)
.(2.14)

Hence combining (2.13) and (2.14) and multiplying both sides by (n−2)(1−γn−1),
we have

1 + γ + · · ·+ γn−2 = (n− 1)µ(1 + γn−2).

This equation has a solution γ ∈ (0, 1) only for certain µ. Let us only consider
n = 3. Then we have

0 = (2µ− 1)(1 + γ),

which has a solution γ ∈ (0, 1) only if µ = 1
2 . In this case there are infinitely many

solutions, for instance,

γ = 1
2 , λ = 1.

Then the solution of (2.3) with initial data E0 = T 1
2 ,1,1

is the self-similar evolution

Et =

{√
1− 4tE0, 0 ≤ t < t∗ = 1

4 ,

∅, t∗ ≤ t.

It is possible to show that this is the unique (open) evolution given by the
viscosity solution of (2.3) in the sense of [34], but this is beyond the scope of this
note. For more details, see [28].

2.3. The sponge. In this section we construct a shrinking “sponge” in dimension
n = 3. It is a self similar solution of the crystalline mean curvature flow with cubic
anisotropy σ(p) = |p|1 with genus 5 and resembles the level 1 Menger sponge. Its
shape is given by a cube centered at the origin from which the neighborhood (in
the maximum (ℓ∞) norm) of all three axes has been removed, see Figure 3. It is an
analogue of the solution that was discovered numerically by D. L. Chopp [21] for
the standard isotropic mean curvature flow.

Let us thus consider the crystalline mean curvature flow

V = σ(ν)κσ(2.15)

where σ(p) = |p|1 is the cubic (ℓ1) anisotropy, with initial data

E0 := Sr0,R0(2.16)

for some constants 0 < r0 < R0, where

Sr,R :=
{
x ∈ R3 : |x|∞ < R, |xi| > r for at least two of i = 1, 2, 3

}
for 0 < r < R, see Figure 3.

We claim that the open evolution {Et}t≥0 solving (2.15) is of the form

Et := Sr(t),R(t),

where r(t), R(t) are solutions of a certain ODE system. Our goal is to find 0 <
r0 < R0 so that the evolution {Et}t≥0 is self-similar.

For 0 < r < R, due to the symmetries, Sr,R has only exactly two types of facets:
(o) the outer facet given by a square of side 2R with square of side 2r with the same
center removed, and (i) the inner facet given by a rectangle with sides of lengths
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(a) (b) (c) (d)

Figure 3. The shrinking sponge. (A) The initial set E0. The
outer edge has length 2R0 while the inner edge has length 2r0.
(B) Self-similar sponge solution with initial size 0.8 at time t =
0.015 computed with domain resolution M = 256. A numerical
solution uses Chambolle’s algorithm; since the solution is unstable,
the accumulated numerical errors will cause it to eventually diverge
from the self-similar solution. (C) Evolution for R0

r0
> ξ∗. (D)

Evolution for R0

r0
< ξ∗.

2r and R− r. The crystalline curvature on each of these facets can be expressed as
the ratio of their signed perimeter and their area, that is,

κo = − 8(R+ r)

4R2 − 4r2
= − 2

R− r
, κi =

1

r
− 2

R− r
=

R− 3r

r(R− r)
.

For a detailed explanation of why these are indeed the curvatures, see Section 2.2
for an explicit Cahn-Hoffman field construction, or [43].

Following the reasoning in Section 2.2, the normal velocity of the outer facet of
{Et} is V = R′(t) and the inner facet is V = −r′(t). Note also that since the facets
of Sr,R are axes-aligned, we have σ(ν) = |ν|1 = 1 a.e. on ∂Sr,R. Therefore (2.15)
simplifies for {Et} into the system of ODEs

R′ = κo = − 2

R− r
,

r′ = −κi = −
R− 3r

r(R− r)
,

t > 0,(2.17)

with initial data r(0) = r0, R(0) = R0.
Let us perform a more detailed analysis of the behavior of the system (2.17).

The evolution will be self-similar if

ξ(t) :=
R(t)

r(t)
≡ const.

Rewriting the system (2.17) for ξ and r, we have
ξ′ =

ξ2 − 3ξ − 2

r2(ξ − 1)
,

r′ = − ξ − 3

r(ξ − 1)
,

t > 0,(2.18)

with initial data ξ0 = R0

r0
> 1, r(0) = r0 > 0.
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We set

g(ξ) := ξ2 − 3ξ − 2.

The constant ξ∗ := 3+
√
17

2 is the unique value > 1 such that g(ξ∗) = 0. Let us also

introduce QR :=
{
x ∈ R3 : |x|∞ < R

}
We can classify the behavior of the solution of (2.18) according to the initial

ratio ξ0 = R0

r0
as follows:

(a) 1 < ξ0 < ξ∗: Since ξ′ < 0 and r(t) ≤ R0, there exists a time t∗ > 0
such that limt→t∗− ξ(t) = 1, that is, limt→t∗−R(t) − r(t) = 0. The sponge
gets thinner with time and converges to the edges of the cube QR(t∗), and
vanishes at t∗; Figure 3(D).

(b) ξ0 = ξ∗: The solution is ξ(t) = ξ0 = ξ∗, r(t) =
√
r20 − 2ct for 0 < t < t∗,

where c = ξ∗−3
ξ∗−1 > 0 and t∗ =

r20
2c > 0. At t = t∗ the sponge vanishes. The

evolution is self-similar.
(c) ξ0 > ξ∗: There is time t□ > 0 such that limt→t□−(ξ(t), r(t), R(t)) =

(+∞, 0, R(t□)). In this case, the holes close up and the sponge becomes
a cube at time t□; Figure 3(D). After t = t□, R evolves with R′ = − 2

R . The

cube vanishes at a later time t∗ > t□.

See Figure 3 for a numerical solution using Chambolle’s algorithm discussed in
Section 3. Note that (b) is unstable since g′(ξ∗) > 0, and therefore numerically we
will observe either (a) or (c).

Let us summarize the solution of (2.15) in terms of the values 0 < r0 < R0:

1 < R0

r0
≤ ξ∗:

Et :=

{
Sr(t),R(t), 0 ≤ t < t∗,

∅, t ≥ t∗.

R0

r0
> ξ∗:

Et :=


Sr(t),R(t), 0 ≤ t < t□,
QR(t), t□ ≤ t < t∗,

∅, t ≥ t∗.

As in the shrinking doughnut case by following [28], one can show that this is
the unique (open) evolution given by the viscosity solution of (2.15) in the sense of
[34].

3. The numerical algorithm

An efficient method for the mean curvature flow (1.2) is based on a minimizing
movement formulation due to A. Chambolle [17], which can be efficiently solved by
a split Bregman iteration proposed by [35,48]. Suppose that Ω ⊂ Rn is a bounded
convex domain and that the evolving set is contained in Ω. Furthermore, we need
to assume that the one-homogeneous extension of β as in (1.1) is convex.

The insight of Chambolle is to formulate the minimizing scheme of F. Almgren,
J. E. Taylor and L. Wang [2] in terms of the signed distance function, so that the
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evolving set is its level set. In [17], he proposed the time discretization by the
minimization problem (f ≡ 0 in [17])

vm+1 ← argmin
v∈L2(Ω)

(
1

2h
∥v − wm∥2 +

∫
Ω

σ(Dv) dx− ⟨fm, v⟩
)
,(3.1)

where h > 0 is a chosen time step, wm is the signed distance function of the level
set {vm < 0} at the previous time step m, induced by the metric given by the
mobility β and fm = f(·,mh). The minimization is performed over all v ∈ L2(Ω),
and ∥·∥ and ⟨·, ·⟩ are the L2(Ω)-norm and inner product, respectively. The total
variation energy

∫
Ω
σ(Dv) dx is defined as the L2 lower semicontinuous envelope of

the functional v 7→
∫
Ω
σ(∇v) dx defined for v in the Sobolev space W 1,1(Ω). Note

that the functional in (3.1) is the Moreau-Yosida regularization of the total variation
energy with parameter h, and the minimization problem (3.1) is equivalent to the
resolvent problem for the total variation energy. In other words, it is the implicit
Euler discretization of the total variation flow [3]. Since |∇vm+1| ≈ |∇wm| = 1

when h is small, we can deduce that vm+1−wm

h ≈ V using (2.1).
The full minimizing movements algorithm to find a discrete sequence of approx-

imations Em, m = 0, 1, 2, . . . of the evolving set {Et}t≥0 at time steps tm = mh
reads: Set E0 as the initial data and then iteratively for m = 0, . . . do

wm ← signdistβ Em

vm+1 ← argmin
v∈L2(Ω)

(µ
2
∥v − wm∥2 + ∥σ(∇v)∥1 − ⟨fm, v⟩

)
,

Em+1 ← {vm+1 < 0},

(3.2)

where µ = 1
h , and f is a given source, and we write ∥σ(∇v)∥1 =

∫
Ω
σ(Dv) dx. Note

that the minimization is equivalent to the minimization of

µ

2

∥∥v − (wm + µ−1fm)
∥∥2 + ∥σ(∇v)∥1 .

The signed distance function must correspond to the anisotropy β. Recall that
we assume that β is one-homogeneously extended to Rn as in (1.1), and such a
extension is an anisotropy. In particular, β is assumed to be convex (but it needs
not to be symmetric with respect to the origin). We define the signed distance as

signdistβ Em(x) := inf
y∈Em

β◦(x− y)− inf
y∈Ec

m

β◦(y − x)

=

{
infy∈Em β◦(x− y), x /∈ Em,
− infy∈Ec

m
β◦(y − x), x ∈ Em,

where β◦(x) := sup {x · p : β(p) ≤ 1} is the convex polar of β. If β(p) = |p|,
signdistβ is just the standard signed distance function induced by the Euclidean
metric.

Let us motivate the above choice of wm. If we set wm to be the signed distance
above, we have β(∇wm) = 1 a.e., see [52]. Then performing (3.2), vm+1 − wm is
approximately (κ − fm)h and the free boundary advances in the normal direction
by

− (κ− fm)h

|∇wm|
= −β

(
∇wm
|∇wm|

)
(κ− fm)h = β(ν)(−κ+ fm)h

yielding the correct free boundary velocity.
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As h → 0, the evolution will converge to a continuous evolution {Et}t≥0, see

[17]. Provided that there is no fattening, this evolution will be the unique solution
of the anisotropic mean curvature flow [18, 19, 39] and, in the crystalline case in
particular, the unique viscosity solution solution of the crystalline mean curvature
flow [33,34].

It might seem that the minimization problem in (3.2) is rather difficult for numer-
ical computation, mainly due to the non-differentiable second term. In particular,
the standard minimization methods like conjugate gradients or Newton iteration
are poorly suited. For this reason, Chambolle proposed an iterative algorithm in
[17]. More recently, it was recognized in [48] that the minimization problem can
be addressed by the so-called proximal algorithms [50], the alternative direction
method of multipliers (ADMM) or the split Bregman method [35]. To find the

minimizer v of µ2 ∥v − u∥
2
+ ∥σ(∇v)∥1, we choose λ > 0, set b0 = d0 = 0 and then

iterate for k = 0, 1, . . .

vk+1 ← argmin
v

µ

2
∥v − u∥2 + λ

2
∥dk −∇v − bk∥2 ,(3.3a)

dk+1 ← argmin
d
∥σ(d)∥1 +

λ

2
∥d−∇vk+1 − bk∥2 ,(3.3b)

bk+1 ← bk +∇vk+1 − dk+1,(3.3c)

until some stopping condition is reached, typically when ∥vk+1 − vk∥2 is sufficiently
small. Heuristically, this scheme introduces a new gradient variable d, and then
enforces the constraint d = ∇v by a quadratic penalty. Since we are minimizing a
sum of convex terms over two variables, the problems can be decoupled into iterating
(3.3a) and (3.3b). (3.3c) is called a Bregman iteration, and it helps to enforce the
constraint exactly. Note that when convergence is achieved, (3.3c) implies d = ∇v.
For a detailed discussion of the motivation, convergence and other properties, see
[35].

The advantage of this iteration process is the simplicity of the subproblems. The
first minimization problem (3.3a) is equivalent to finding the solution v of

(µ− λ∆)v = µu+ λ div(bk − dk) in Ω,(3.4)

with an appropriate boundary condition, for instance Neumann. It is not necessary
to solve it accurately, so one or two Gauss-Seidel iterations are sufficient [35].

To find a numerical solution, we use the finite difference method (FDM) or the
finite element method (FEM) to discretize (3.2), see Section 3.1. In both cases, we
represent d, b by discrete values on the lattice (FDM) or on the elements (FEM).
This has the important consequence that the minimization problem (3.3b) for d in
the discrete case completely decouples. Then, for each node or element i the ith
component of the minimizer dk+1,i is given by the so-called shrink operator [35]

dk+1,i = shrinkσ((∇vk+1 + bk)i, 1/λ).(3.5)

Note that the shrink operator can be expressed using the orthogonal projection on
the Wulff shape W of σ [48],

shrinkσ(ξ, 1/λ) := (I − PW/λ)(ξ).

In typical cases of isotropic, cubic and hexagonal anisotropies, that is, when the
Wulff shapeW is a sphere, a cube or a hexagonal prism, respectively, the orthogonal
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Figure 4. Rounding of edges in the computation in Figure 18;
neighborhood of the top left vertex (top row) and bottom right
vertex (bottom row) are magnified: FDM (left column) vs. FEM
(right column).

projection is very simple. More general Wulff shapes can be handled by the method
proposed in [48].

It is interesting to relate the Bregman iterate b to the Cahn-Hoffman vector field
in the definition of the anisotropic (crystalline) mean curvature. In particular, for a
node or an element i, if convergence is achieved, (3.5) yields di = shrinkσ(di+bi, 1/λ)
and we have bi = PW/λ(di + bi). From the last equality, we see that either di = 0,
but then λbi ∈ W, or di ̸= 0, but then λbi ∈ ∂W and di is a normal of ∂W at λbi.
In other words, λbi ∈ ∂σ(di). From (3.4) we deduce that v−u

h = λ div b. Hence λb
is a discrete Cahn-Hoffman vector field for the resolvent problem (3.1).

3.1. Discretization: FDM vs FEM. The standard way [35, 48] to discretize
(3.3) is to use the finite difference method (FDM). This is quite straightforward,
see also [17], and seems sufficient in two dimensions and for applications in image
processing. For instance, (3.4) is discretized using the standard central difference
scheme on a 2n + 1 point stencil. However, in three dimensions this approach
introduces unwanted artifacts, for instance rounding of edges in certain directions,
see Figure 4. This is most likely caused by the fact that the gradient d and the
Cahn-Hoffman vector field b on a given cubic cell are given only by four out of the
eight nodes. This restriction of the number of degrees of freedom for the gradient
limits the ability of the discretization to account for a rapidly changing vector field
near an edge.

We propose a finite element method (FEM) discretization. We minimize the
functional in (3.3a) on the space of piece-wise linear functions (P 1 elements) on a
tetrahedral mesh. The vector fields ∇v, d and b are then approximated by piece-
wise constant vector fields (P 0 elements) on this mesh. The minimization problem
(3.3b) on the space of piece-wise constant (P 0 elements) completely decouples on
each element and the minimizer is given by (3.5).

The merit of this approach is the six-fold increase of the number of degrees of
freedom of d and b (for the cost of also increasing the memory and computational
time requirements), which allows for a better resolution of edges, see Figure 4.
Additionally, it is consistent with our redistance approach in Section 3.2. However,
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Figure 5. A triangular anisotropy demonstrates a topological
change in 2D for non-even anisotropies. Left: FDM Right: FEM.
Parameters h = 10−4, M = 64, and plot step 0.005 = 50h.

(0, 0) = ξ1,1 = ξ2,1 (1, 0) = ξ1,2

(0, 1) = ξ2,1 (1, 1) = ξ1,3 = ξ2,3

T1

T2

Figure 6. Tessellation of the unit cube in n = 2.

at some extreme cases in two dimensions the FEM performs worse than FDM, see
Figure 5 for an example.

Let us present the mesh construction in an arbitrary dimension to fix the idea.
We assume that the computational domain is a cube Ω is subdivided into Mn

smaller cubes of equal size, M ∈ N is the resolution. We split each of the smaller
cubes into n! simplices in the following way. By translation and scaling, we may

assume that the small cube is Q = [0, 1]n. Let {pm}n!m=1 be the n! permutations
of (1, . . . , n). For each m = 1, . . . , n!, we define the sequence of n + 1 vertices
ξm,1, . . . , ξm,n+1 of Q using

ξm,1 = (0, . . . , 0),

(ξm,j+1)i =

{
(ξm,j)i + 1 if i = (pm)j ,

(ξm,j)i otherwise,
i = 1, . . . , n.

Then their convex hulls,

conv(ξm,1, . . . , ξm,n+1), 1 ≤ m ≤ n!,
are simplices that form a tessellation of Q, see Figure 6.

We use the mesh that is given by the above tessellation of each of the Mn cubes
in Ω. The total number of elements is n!Mn.

3.2. Redistance. At each time step of the algorithm (3.2), the signed distance
function signdistβ {vm < 0} to the 0-level set of the solution of the minimization
problem has to be recomputed. (This is not strictly true, see the discussion in
Section 3.3.) It is sometimes referred to as redistance. The problem amounts to
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solving the (anisotropic) eikonal equation |∇w|β := β◦(∇w) = 1 with boundary
data w = 0 on ∂E. There are various efficient methods for doing this, including
an iteration scheme [55], as well as more direct algorithms like the fast marching
method [53] or the fast sweeping method [58]. We choose the fast sweeping method
due to its simplicity and efficiency.

The boundary ∂E is given as the 0-level set of a function v with discrete values
on a regular grid. Unfortunately, in general the 0-level set of the resulting approx-
imation w of the signed distance function will be different from the 0-level set of
the original function v. The fast marching and fast sweeping methods require an
initialization step, where the distance function is assigned at grid points that are
direct neighbors of the 0-level set of v. A special care must be taken so that the
interface is not moved unnecessarily, as these effects might quickly accumulate over
a series of consecutive time steps. This is especially important at points where
the surface should not move, a typical case for non-convex and non-concave facets,
where this unwanted redistance effect might dominate the evolution.

There are a few standard schemes to initialize the nearby values in the literature,
by analyzing the intersection of the level set with the grid lines [1, 17]. However,
they do not seem to reproduce the correct value of the distance function even if
the level set is flat, which is a common situation in the crystalline mean curva-
ture flow. Furthermore, the generalization to three dimensions seems unnecessarily
complicated.

We choose a naive method that appears to be superior in our case, is very simple
to implement in an arbitrary dimension, and that computes the exact signed dis-
tance function in a neighborhood of the flat facets (away from vertices and edges).
The idea is to split the Mn cubes of the uniform grid into n! simplices as explained
in the construction of the mesh for the finite element method in Section 3.1 and sup-
pose that v is affine on each of them. This is very much in the spirit of the marching
tetrahedra method [22]. Then for all elements that the 0-level set intersects, that
is, on which v changes sign, we set the initial value of the signed distance function
at each vertex of the element to be the value of v normalized by the β-norm of the
gradient of the affine function given by v on the element. If a given grid node is
a vertex of multiple elements intersecting the 0-level set, we set the initial value
to be the minimum over all the elements. To be more explicit, suppose that vi,
wi, i = 1, . . . , N are the values at the grid nodes xi, and Tj , j = 1, . . . ,K are the
simplices on which v changes sign. We initialize wi to

wi = (sign vi) inf
1≤j≤K
xi∈∂Tj

|vi|
β◦(∇v|Tj

)
,

where the infimum is defined as +∞ if it is over an empty set and ∇v|Tj
is the

(constant) value of ∇v on the simplex Tj . This initialization method is second
order accurate, O(M−2), near a smooth surface, in contrast to the first order ac-
curacy of the initialization in [1, 17]. Moreover, the unwanted artifacts caused by
the redistance seem to be reduced, for instance compare the preservation of non-
convex/non-concave facets in Figure 17, even for a modest space resolutionM = 64.

After this initialization step, we perform the 2n sweeps of the fast sweeping
method [58].
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3.3. Notes on the implementation. Let us give a few notes on our implemen-
tation from a practical point of view.

In the discussion of the iteration (3.3), we suggested to initialize b0 = d0 = 0.
However, this is unnecessary since the iteration converges to the unique minimizer
no matter the initial guess. Since the vector fields b and d vary relatively slowly from
one time step to another, we can reuse the value of b and d from the previous time
step to start the iteration. The main consequence is that the number of iterations
of (3.3) necessary to obtain a reasonably accurate result is dramatically decreased
as the work is spread out over consecutive time steps, see Table 1.

The choice of the stopping criterion for the iteration (3.3) is important. In our
implementation we stop once ∥vk+1 − vk∥ < εbtol for some given εbtol > 0, where
∥·∥ is for example the ℓ2 norm. When εbtol is chosen too large, the facets do not
become flat as there are too few iterations to reduce the lowest frequency mode of
the error, whose wavelength is proportional to the size of the facets. On the other
hand, if εbtol is chosen too small, the number of iterations becomes unnecessarily
high for no gain in accuracy, which is limited by the time step error O(h) and
the ability to resolve the corners and edges of the crystal with accuracy O(M−1).
Unfortunately, there does not seem to be an explicit way to estimate the necessary
εbtol and some experimentation is required, see Figure 8.

Another source of numerical problems is the computation of the distance func-
tion in (3.2), see the discussion in Section 3.2. However, often vm is a very good
approximation of wm close to the zero-level set and hence we can take wm = vm
and skip the distance computation for a few time steps, after which we need to
recompute the distance function. This can help reducing the redistance artifacts
that sometimes appear, especially if the time step is very small and there are parts
of the surface that do not move, such as non-convex/non-concave facets or curved
sections. We did not use this in the results presented here.

3.4. Numerical results. To illustrate the performance, we present a few simple
numerical results based on our implementation of the above algorithm in the Rust
programming language. The domain is always taken to be Ω = (− 1

2 ,
1
2 )
n and

λ = µ
8 in (3.3a), (3.3b), see Section 3.4.2. The stopping condition is chosen as

∥vk+1 − vk∥ℓ2 < 10−5 for n = 2 and ∥vk+1 − vk∥ℓ2 < 10−4M
1
2 for n = 3, where

∥·∥ℓ2 is the discrete ℓ2-norm, so that the average stopping tolerance per element
scales likeM−1. This choice seems to give reasonable results across all computations
presented here. We use M = 64 in n = 2 andM = 256 for n = 3. The performance
for n = 3 is ≈ 1min/timestep for FDM and ≈ 5min/timestep for FEM on a single
core of Intel Core i7-4770K @ 3.50 GHz. The figures depicting the solution show
the zero-level set of the numerical solution vm.

3.4.1. Estimating the error of solutions. To quantify the error between the numeri-
cal and the exact solution, we consider the Hausdorff distance between two surfaces
Γ1,Γ2 ⊂ Rn in the maximum and L2 norms as

distH,∞(Γ1,Γ2) := max

(
max
x∈Γ1

dist(x,Γ2),max
x∈Γ2

dist(x,Γ1)

)
,

distH,2(Γ1,Γ2) :=

(∫
Γ1

dist(x,Γ2)
2 dHn−1 +

∫
Γ2

dist(x,Γ1)
2 dHn−1

) 1
2

.
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Figure 7. Relative error of the numerical Hausdorff distance for
two concentric circles of radii 0.3 and 0.4 (left) and two concentric
squares of side-length 0.6 and 0.8 (right) as a function of the mesh
resolution M . The distance function in our implementation of the
fast sweeping method is only first-order accurate, which influences
the computation for larger M . This is more apparent in the case
of the maximum distance. Dotted lines are M−1 and M−2 for
comparison.

Note that distH,∞ is the usual Hausdorff distance. Both are defined to be ∞ if
exactly one of the surfaces is empty.

Numerically, these two distances between two level sets are computed with the
discrete distance function given by the fast sweeping method with the initialization
described in Section 3.2. The integrals and maxima are approximated by those
of the piece-wise linear distance function over a mesh generated from the level
set function by the marching tetrahedra method [22] in two or three dimensions.
Both distances work well for smooth surfaces, but distH,∞ penalizes corners and
overemphasizes errors on a small part of the boundary. In Figure 7 we test the
accuracy of this numerical algorithm in cases of the level set of (x21+x

2
2)

1/2−r (circle)
and max(|x1|, |x2|)−r (square) with r = 0.3, 0.4 for each. Initially, whenM−1 ≈ 0.1,
the accuracy is dominated by the accuracy of the level set reconstruction using the
marching tetrahedra and the distance function initialization explained in Section 3.2
and both of these are second-order accurate. Once M−1 ≪ 0.1, the first-order
discretization error in the fast sweeping algorithm dominates. Therefore we report
the errors using distH,2, which appears to be less sensitive to this error.

3.4.2. Choice of λ. Let us address the choice of the parameter λ in proportion to
µ. Theoretically, the split Bregman iteration will converge for any λ > 0. However,
this parameter significantly affects the speed of convergence. In the original paper
[35] it was suggested to use λ = 2µ. But after somewhat extensive testing in our
case it appears that the value λ = µ

8 gives the fastest convergence and smallest error
overall over both two and three dimensional computations. In this test, we simply
ran the computation for many choices of parameters λµ and stopping conditions εbtol
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Figure 8. Performance for different λ
µ and εbtol for the shrinking

hexagon in n = 2. The area of the discs is proportional to the log-
arithm of the error, while the area of the diamonds is proportional
to the logarithm of the computational time. λ

µ = 0.001 × 27 ≈ 1
8

is generally well-performing.

in ∥vk+1 − vk∥ℓ2 < εbtol for a self-similar shrinking hexagon in two dimensions and
shrinking cube in three dimensions with various M and h, and plotted the errors
and computational time. See Figure 8 for an example. Due to the computational
cost in three dimensions, the testing was much less exhaustive there.

3.4.3. Self-similar solutions. We test the method in two and three dimensions using
self-similar solutions of V = β(ν)κσ. In two dimensions, we use the shrinking Wulff
shape solution with hexagonal symmetry: the Wulff shape is the regular hexagon
with edge of length 1, Figure 9. The results are given for three different time
step sizes h. For implementation reasons, this and the below tests with hexagonal

mobility have time scaled by the factor 2
√
3

3 . Therefore the extinction time in n = 2

is not t∗ = 0.42

2 = 0.08 as expected but 0.42
√
3

4 ≈ 0.069, and 0.42
√
3

8 ≈ 0.035 in n = 3.
In three dimensions, we use the shrinking Wulff shape solution when the Wulff shape
is the hexagonal prism with height 2 and regular hexagonal base with edges of length
1, Figure 10. Finally, we use the self-similar solutions constructed in Section 2. Due
to their instability, presence of different types of facets and simplicity, they seem
to provide a convenient benchmark. For the crystalline shrinking doughnut, we
use cubic and hexagonal anisotropies σ̃, see Figure 11 and Figure 12 respectively.
The error of the sponge solution is presented in Figure 13. In all of these, the
error is estimated as maxm∈M distH,2(∂E(tm), ∂Em) whereM is a set of selected
time steps such that for all m ∈ M we have tm = 0.002z for some z ∈ Z, and
that tm are far enough from the extinction time t∗, where all the solutions diverge
significantly due to the instability. Table 1 shows the details on the performance of
the algorithm for n = 3 and M = 64, 256.

3.4.4. Qualitative tests. Samples of evolutions in two dimensions for various aniso-
tropies are shown in Figure 17. In this case, the stopping condition is taken as
∥vk+1 − vk∥ℓ2 < 10−4 to illustrate the effect of choosing too large of a stopping
tolerance, and therefore the very long edges in the bottom right figure are not
completely straight. The stationary parts of the boundary are very well preserved
and redistancing artifacts are not noticeable. In the rest of the figures, we show
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M = 64
FDM FEM

Test #Breg/step time/Breg (s) #Breg/step time/Breg (s)
Hex Wulff 24 0.017 29 0.066
ℓ1 doughnut 35 0.017 52 0.068
Hex doughnut 38 0.017 39 0.075
Sponge 28 0.014 33 0.044

M = 256
FDM FEM

Test #Breg/step time/Breg (s) #Breg/step time/Breg (s)
Hex Wulff 42 0.93 42 2.8
ℓ1 doughnut 100 0.68 109 3.0
Hex doughnut 93 0.78 98 3.5
Sponge 133 0.69 125 3.1

Table 1. Performance of the numerical method in n = 3 with
M = 64 and M = 256 for tests in Section 3.4.3 based on the
average number of Bregman iteration per time step (#Breg/step)
and average time per one Bregman iterations (time/Breg (s)) in
seconds. Ran on Intel Xeon CPU E5-4650 v2 @ 2.40GHz.

qualitative tests of facet breaking, bending and topological changes in n = 3, see
Figure 14, Figure 15, Figure 16 and Figure 18.

3.4.5. Discussion. The implementation of the numerical method presented in the
paper is able to reproduce all of the tested features of the highly singular crystalline
mean curvature flow without the need to regularize the crystalline curvature: flat
faces, sharp edges and vertices, correct facet breaking and bending, and finally topo-
logical changes like neck pinching and facet-edge or edge-vertex collisions. Moreover,
the method appears to be first order accurate both in space and time. We also pre-
sented a FEM discretization of the total variation energy that seems to perform
visually somewhat better than the FDM discretization for non-cubic anisotropies
for the cost of increased computational time. Our scheme for the reinitialization
of the distance function seems to perform well without introducing redistancing
artifacts.

Various optimizations, such as performing the computation only in a small neigh-
borhood of the level set to significantly reduce the computational complexity, as well
as the coupling of the curvature flow with the heat equation via the Gibbs-Thomson
relation are under investigation [51].

Acknowledgments. Parts of this paper are based on an extended abstract for a
talk that the author gave at the 2017 Spring Meeting of the Mathematical Society
of Japan.
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Figure 9. The error of a self-similar shrinking hexagonal Wulff
shape of side-length 0.4 in n = 2 with the numerical solution using
the FEM (solid) and FDM (dashed) discretization (maximum over
t ∈ [0, 0.05]). Dotted line is M−1.
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Figure 10. The error of a self-similar shrinking hexagonal Wulff
shape with a hexagonal base with edges of length 0.4 and height
0.8 in n = 3 with h = 10−4 as the function of M (top, maximum
over t ∈ [0, 0.026]) and t for M = 128 (bottom).
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Figure 11. The error of a self-similar crystalline shrinking dough-
nut with ℓ1 anisotropy from Section 2.2 of side-length 0.8 in
n = 3 with h = 10−4 as the function of M (top, maximum over
t ∈ [0, 0.02]) and t for M = 128 (bottom).
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Figure 12. The error of a self-similar crystalline shrinking dough-
nut with hexagonal anisotropy from Section 2.2 of hexagonal base
with side-length 0.4 and height 0.8 in n = 3 with h = 10−4 as the
function ofM (top, maximum over t ∈ [0, 0.02]) and t forM = 128
(bottom).
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Figure 13. The error of a self-similar shrinking sponge from Sec-
tion 2.3 with R0 = 0.4 in n = 3 with h = 10−4 as the function of
M (top, maximum over t ∈ [0, 0.014]) and t forM = 128 (bottom).

Figure 14. Facet breaking example in 3D [14] at three selected
times—L-shaped facets break into rectangular facets.

Figure 15. Facet bending (the top facet) in an axes-aligned initial
shape for the cubic (ℓ1) anisotropy [42], with a detail on the right.
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Figure 16. Topological change in 3D with a hexagonal
anisotropy—a pinch-off of an initially connected dumbbell shape.
FDM discretization; some rounding of edges is apparent.

Figure 17. Flow V = κσ with various anisotropies: h = 10−4,
M = 64, FEM discretization and plot step 0.005 = 50h. The
bounding box of the initial curve is the square [−0.4, 0.4]2 inside
the computational domain (− 1

2 ,
1
2 )

2. Even at this relatively low
resolution, artifacts caused by the redistance are not apparent.
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Figure 18. Topological change in 3D with a triangular
anisotropy—a pinch-off due to a collision of a facet and an edge.
FEM discretization.
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