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Abstract. We consider a class of anisotropic curvature flows called
crystalline curvature flows. We present a survey on this class of flows
with special emphasis on the well-posedness of its initial value problem.
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1. Introduction

The famous mean curvature flow was introduced by W. W. Mullins [136]
to model the motion of an antiphase grain boundary in annealing metals.
Its governing equation is called the mean curvature equation and it is an
equation for a one-parameter family of hypersurfaces {Γt} (an evolving hy-
persurface) in Rn which imposes that the normal velocity V equals the mean
curvature κ, i.e.,

V = κ on Γt;

here, the curvature and the velocity is taken in the direction of the normal
vector field ν of Γt. This equation can be interpreted as a steepest descent
flow of the surface area. In materials science the surface area is considered
as an interfacial energy of the grain boundary. It is quite natural to consider
anisotropic effects. For this purpose, one considers the anisotropic interfacial
energy

I(Γ) =

∫
Γ

σ(ν) dHn−1,

where σ is a given positive function called the interfacial energy density;
here, dHn−1 is the surface area element of a hypersurface Γ. Its first vari-
ation is called the anisotropic mean curvature denoted by κσ; this is often
called the weighted mean curvature. If one replaces the mean curvature by
the anisotropic mean curvature in the mean curvature flow equation, the
resulting equation is of the form

(1.1) V = κσ on Γt.

In general, this equation may not be parabolic even if σ is smooth. We
consider the one-homogeneous extension of σ in Rn and still denote it by σ,
i.e.,

(1.2) σ(p) = |p|σ(p/|p|), p ∈ Rn \ {0}.

If σ is convex, the equation (1.1) is at least degenerate parabolic. Although
the problem when σ is not convex is interesting, we do not touch this prob-
lem in this paper. The reader is referred to [22] for such an ill-posed problem.

The anisotropic mean curvature flow can be considered as the mean cur-
vature flow in a Minkowski metric or a Finsler metric. In this case, V should
be replaced by the Minkowski normal velocity. If one uses the Euclidean
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normal velocity, it is of the form

V = σκσ;

see [30] for this perspective.
The curvature flow is not restricted to the form (1.1). For second-order

models, a general form of the flow is

(1.3) V = g(ν, κσ)

with g non-decreasing in the second variable. A typical example in thermo-
dynamics is

V =M(ν)(κσ + C)

with mobility M(ν) > 0 and a driving force C, where C is a constant
[99], [10]. There are several other examples when g is nonlinear in κσ. For
example,

V = |κσ|α−1κσ

with some positive number α. We shall discuss these examples in Section 2.
For later convenience, we say that σ : Rn → [0,∞) is an anisotropy if σ

is positively one-homogeneous, convex and σ > 0 outside the origin. Note
that we do not assume that σ is even. By definition, σ satisfies (1.2) and
the Frank diagram

Fσ = {p ∈ Rn | σ(p) ≤ 1}
is bounded, convex and contains the origin as an interior point.

For many applications, especially in low temperature physics, it is often
considered the case that σ is not C1. An extreme case is that the anisotropy
σ is (purely) crystalline, i.e., σ is piecewise linear so that Fσ is a convex poly-
tope. A crystalline mean curvature flow is formally (1.3) when anisotropy
σ is crystalline. In mathematical community, it was introduced by J. E.
Taylor [156] and independently by S. B. Angenent and M. E. Gurtin [10]
around 1990.

One might be curious on the value of κσ when σ is crystalline. To moti-
vate it we consider an anisotropic isoperimetric problem of the form
“Find a shape D in Rn with fixed volume which minimizes the surface en-
ergy I(Γ) with Γ = ∂D.”
This problem was first studied by Wulff [167] and it turns out that the
minimizer is the Wulff shape

Wσ =
⋂

|m|=1

{x ∈ Rn | x ·m ≤ σ(m)} ,

which is the polar of Fσ. This has been proved in quite general setting; see
e.g. [155], [62]. For recent developments related to optimal transport theory,
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see [61]. Note that if σ is crystalline so that Fσ is a polytope, thenWσ is also
a polytope. For a smooth anisotropy, one observes that the anisotropic κσ on
the surface ofWσ is a non-zero constant, and soWσ plays the same role as a
ball for the usual curvature. More precisely, if one takes ν inward, κσ = n−1.
If σ is crystalline, then Wσ is a polytope. Nevertheless, κσ should not be
zero. This simple observation shows that the value κσ cannot be determined
by infinitesimal quantities like tangent and second fundamental form of the
surface. We say that (1.3) is a crystalline (mean) curvature flow (equation)
if σ is crystalline.

We now consider a simple formal example of a crystalline curvature flow
for a graph-like curve. For later convenience, we write the equation (1.1)
when Γt is given as the graph of a function w = w(x′, t), i.e., xn = w(x′, t)

for x = (x′, xn) ∈ Rn, x′ ∈ Rn−1. The upward normal velocity is given as

V =
wt

(1 + |∇′w|2)1/2
,

where wt = ∂w/∂t, ∇′w = (∂x1w, . . . , ∂xn−1w), ∂xj = ∂/∂xj, wxj = ∂xjw.
The anisotropic mean curvature is formally of the form

κσ = − divΓt ζ(ν) with ζ(ν) = (∇pσ)(ν),

where ∇pσ denotes the gradient of σ, i.e., ∇pσ = (∂p1σ, . . . , ∂pnσ) for
anisotropy σ = σ(p1, . . . , pn). The divergence divΓt denotes the surface di-
vergence, i.e.,

divΓt X = trace
(
(I − ν ⊗ ν)∇X

)
;

here, we extend X in a tubular neighborhood of Γt in a suitable way and
∇X denotes its Jacobi matrix. This value is independent of the extension;
see e.g. [83]. In our setting,

divΓt ζ(ν) =
n−1∑
ℓ=1

∂

∂xℓ

(
∂σ

∂pℓ
(ν)

)
where ν = (−∇′w, 1)/ (1 + |∇′w|2)1/2. Indeed,

trace(ν⊗ν∇ζ) =
n∑

i,j=1

νiνj
∂

∂xi

(
(∂pjσ)(ν)

)
=

n∑
i,j,ℓ=1

νiνj(∂pj∂pℓσ)(ν)∂xjν
ℓ = 0

since
∑n

j=1 νj∂pj ((∂pℓσ)(ν)) = 0 by positively zero-homogeneity1 of ∂pℓσ.
Moreover, since ∂pℓσ(ν) is independent of xn, we have the desired identity.

1Let s be a real number. A function f allowing values ±∞ defined in a vector space V
is called positively s-homogeneous if f(λv) = λsf(v) holds for all λ > 0 and v ∈ V . The
function f is allowed to take the value +∞ especially when V is an infinite dimensional
space. Indeed, in Section 5.1, we consider a total variation type energy in L2 space, which
is an example of positively one-homogeneous but take the value +∞ somewhere.
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Figure 1. The Frank diagram and the Wulff shape for
σ(p) = |p1|+ |p2|.

If Γt is a graph-curve in R2, then

− divΓt ζ = −∂x1
(
∂σ

∂p1
(−wx, 1)

)
,

since ∇pσ is positively zero-homogeneous.
We now observe that (1.1) is formally of the form

(1.4) wt
(1 + w2

x1
)1/2

= −∂x1
(
∂σ

∂p1
(−wx1 , 1)

)
.

If σ(p) = |p|, then
∂σ

∂p1
(p) =

p1
|p|

so that ∂σ

∂p1
(−wx1 , 1) = − wx1

(1 + w2
x1
)1/2

,

which yields a curve-shortening equation for a graph-like curve Γt : x2 =

w(x1, t), i.e.,
wt

(1 + w2
x1
)1/2

= ∂x1

(
wx1

(1 + w2
x1
)1/2

)
or wt =

wx1x1
1 + w2

x1

.

We are interested in the case when σ is crystalline. Let us consider

σ(p) = |p1|+ |p2|

so that the Frank diagram Fσ is a square whose vertices are (±1, 0) and
(0,±1); see Figure 1 for Fσ and the corresponding Wulff shape Wσ. The
derivative ∂σ

∂p1
must be interpreted in a suitable generalized sense, for ex-

ample, as the subdifferential of σ; see (1.6) below. Then (1.4) becomes
wt = (1 + w2

x1
)1/2∂x1(sgnwx1). Since it is expected that ∂x1(sgnwx1) = 0

away from the set {wx1 = 0}, it is formally equivalent to

(1.5) wt = ∂x1(sgnwx1),

where sgn p1 = p1/|p1|. This equation is a total variation flow equation in
one-dimensional setting. If one calculates the right-hand side formally, then
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(1.5) is
wt = 2δ(wx1)wx1x1 ,

where δ denotes Dirac’s delta. This shows

∂x1(sgnwx1) = (1 + w2
x1
)1/2∂x1(sgnwx1).

However, the quantity δ(wx1) is undefined because it is a pull-back of the
delta measure although it suggests the diffusion coefficient equals zero if
wx1 is not equal to zero. In other words, the place where wx1 is not zero
does not move. To see the speed where wx1 is zero, let us consider a special
(Lipschitz) profile x2 = w0(x1) which takes the minimum value on [a, b] and
w0x1 > 0 (resp. w0x1 < 0) in x1 > b (resp. x1 < a), where a < b (Figure 2).
We try to move this function by (1.5). Since it is natural to assume that

x1

x2

a b

w0

Figure 2. The graph of w0.

the speed equals zero outside [a, b], the important thing is to calculate the
speed on [a, b]. Here we put the ansatz:
“The speed wt on [a, b] is spatially constant.”
In other words, a flat part (called facet) stays as a facet and no bending nor
facet splitting occurs.

We integrate (1.5) in a neighborhood of [a, b], i.e., (a − ε, b + ε) with
small ε > 0 and obtain at t = 0∫ b+ε

a+ε

wtdx =

∫ b+ε

a+ε

∂x1(sgnw0x1)dx = sgnw0x1(b+ ε)− sgnw0x1(a− ε)

= 1− (−1) = 2.

By our ansatz, the left-hand side is of the form

wt(b− a)

as ε→ 0. Thus, we obtain

wt = 2/(b− a).

The right-hand side is a nonlocal quantity and this is a one-dimensional
version of the Cheeger ratio Hn−1(∂Ω)/Ln(Ω) defined for a domain Ω in Rn,
where Ln(Ω) denotes the Lebesgue measure of Ω while Hn−1(∂Ω) denotes
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the (n−1)-dimensional Hausdorff measure of the boundary ∂Ω of Ω. We now
observe that the crystalline curvature should be determined by a semilocal
quantity like Cheeger ratio if one assumes the ansatz.

In a one-dimensional setting, this ansatz is justified in the sense that such
a profile is approximated by a solution of a uniformly parabolic equation
which approximates the equation (1.5). For example, order-preserving prop-
erty called comparison principle is expected to hold. However, in a higher
dimensional setting, as we see later, this ansatz is no longer appropriate.
For example, this ansatz violates the comparison principle.

For curve evolutions, using this ansatz J. E. Taylor [156] and indepen-
dently S. B. Angenent and M. E. Gurtin [10] introduced a special class
of polygonal curves called admissible. We say that an oriented polygon is
admissible if the orientation (normal ν) of each facet (edge) is one of that
in ∂Wσ and the orientation of adjacent facets should be adjacent in ∂Wσ.
Here Wσ is the Wulff shape associated with anisotropy σ and it is a convex
polygon if σ is crystalline. If the second condition (called adjacency condi-
tion) is not required, one expects that new facets may be created because
of a strong curvature effect. We shall discuss this point in Section 3. Let
{Γt} be a smooth family of admissible polygons. In other words, vertices of
Γt are assumed to move C1 in time t. The motion of vertices is completely
determined by the crystalline flow equation (1.3). Here, κσ of each facet
with normal ν is assumed to be equal to χ∆/L, where L is the length of the
facet and ∆ is the length of the facet of Wσ with normal ν; χ takes values
in {−1, 0,+1} depending upon convexity near the facet. Since L depends
upon vertices, combining these equations, a system of ordinary differential
equations (ODEs) for vertices or lengths is obtained. Its initial value prob-
lem is uniquely solvable at least when g is (locally) Lipschitz continuous.
For later convenience, we say that {Γt} is a crystalline flow if Γt is a smooth
family of admissible polygons satisfying the system of these ODEs. How-
ever, there is a chance that in finite time a facet disappears. Fortunately,
in many cases at the time when a facet disappears, Γt is still admissible so
one is able to continue to solve the system of ODEs with fewer facets. This
approach is simple and it is easy to compute the crystalline flow [156], [160],
[157]. Moreover, it satisfies the desired property like comparison principle
which says that if one admissible polygon encloses another, then the corre-
sponding crystalline flow starting from these polygons keeps this order; see
[160], [85].



8 Y. GIGA AND N. POŽÁR

There is another approach based on the theory of maximal monotone
operators initiated by Y. Kōmura [123] and developed by H. Brezis [31] and
others in late 1960s and 1970s. A basic theory asserts the unique global-in-
time solvability of the initial value problem for the gradient flow equation
whose “energy” E is a convex, lower semicontinuous functional in a Hilbert
space H equipped with an inner product ⟨·, ·⟩ so that ∥f∥2H = ⟨f, f⟩. More
precisely, it is a solvability for the system wt ∈ −∂E(w) where ∂E(w) is the
subdifferential of E at w, which is an extended notion of a differential of E .
It is defined as

∂E(w) = {f ∈ H | E(w + h)− E(w) ≥ ⟨f, h⟩ for all h ∈ H} .(1.6)

Note that E may not be differentiable so that ∂E(w) may not be a singleton.
However, the solution is unique and it “knows” how to grow even though the
evolution law looks ambiguous. Actually, the solution is right differentiable
in time and its speed equals to the minimal section (canonical restriction)
∂0E(w) of ∂E(w), i.e.,

∂0E(w) = argmin
{
∥f∥H

∣∣ f ∈ ∂E(w)
}
,

which is uniquely determined. In [63], it is shown that if {Γt} is given as the
graph of a periodic function of one variable, then the equation V =M(ν)κσ

can be written as a gradient flow system. Moreover, the speed given by the
general theory is the same as the one given in the ansatz on a facet. This
suggests the approach by [156], [10] is quite natural. In fact, it is shown
in [63] that the crystalline flow is obtained as a limit of approximate solu-
tions solving a usual uniformly parabolic problem approximating the origi-
nal problem. This justifies the ansatz for curve evolution. The proof is based
on a general convergence theory for gradient flow systems developed by [33]
and [165]. To apply the theory, it suffices to prove that the approximating
energy Eε converges to E in the sense of Mosco, i.e., it satisfies

(i) sequential lower semicontinuity under weak topology:

E(w) ≤ lim
ε↓0

Eε(wε) for wε ⇀ w (as ε→ 0);(1.7a)

(ii) existence of a strong recovery sequence: for any v ∈ H, there is
vε → v as ε→ 0 such that

E(v) = lim
ε↓0

Eε(vε).(1.7b)

The nonlocal property of the speed related to a total-variation-type singular
energy was also observed in [102].
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If the flow equation is written as a gradient flow of a convex, lower
semicontinuous functional in a Hilbert space, one is able to calculate the
speed by calculating the minimal section. It is a kind of obstacle problem
as we will see later. Reflecting this idea, G. Bellettini, M. Novaga and M.
Paolini [25] gave an example that the speed of a facet may not be a constant
on a facet. In other words, the quantity κσ may not be a constant on a facet
since otherwise it would contradict a comparison principle. Later, they gave
a characterization of non-constancy of κσ on a facet depending on shape. To
illustrate the problem, let us consider a closely related problem: the total
variation flow equation

(1.8) wt = div (∇w/|∇w|)

on an n-dimensional torus Tn = Πn
i=1(R/ωiZ), ωi > 0 (i = 1, . . . , n). Except

Section 9, we shall assume ωi = 1 for simplicity. It can be interpreted as a
gradient flow of the total variation energy

E[w] =

∫
Tn

|∇w| := sup

{∫
Tn

w div z dx
∣∣∣ |z(x)| ≤ 1, z ∈ C1(Tn,Rn)

}
for an L2 function w. We set the energy E in the Hilbert space H = L2(Tn)
such that E = E. Then, it is not difficult to see that E is convex and lower
semicontinuous in H = L2(Tn). The problem (1.8) should be interpreted as

wt ∈ −∂E(w)

and there is a unique solution starting from w0 ∈ H = L2(Tn). The speed is
given as the minimal section and we are interested in the value. We restrict
ourselves to a facet where w is “convex” in its neighborhood. We fix t > 0

and let w take its minimum on a facet, i.e.,

F =

{
x ∈ Tn

∣∣∣ w(x, t) = min
y∈Tn

w(y, t)

}
.

Assume that the boundary of F is smooth. Then it turns out that

−∂0E(w)
∣∣
F
= div z,

z = argmin

{∫
F

| div ζ|2 dx
∣∣∣ ζ · νF = 1 on ∂F, |ζ| ≤ 1 in F

}
.

Here νF is the exterior unit normal of F . This is a convex minimization prob-
lem but it is of obstacle type because of the constraint |ζ| ≤ 1. Although the
minimizer is not unique, div z is uniquely determined. The characterization
of the minimal section is nontrivial but it can be done for the total variation
flow equation. For a detailed explanation, the reader is referred to a very
nice book by F. Andreu-Vaillo, V. Caselles and J. M. Mazón [7]. If div z is
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constant, we say that F is calibrable. There are several necessary and suf-
ficient conditions; see e.g. [26] for the curvature flow. We shall discuss this
topic in Section 5. If it is calibrable, then div z must be the Cheeger ratio,
i.e., div z = Hn−1(∂F )/Ln(F ). Indeed, integration by parts yields

(div z)Ln(F ) =
∫
F

div z dx =

∫
∂F

z · νF dHn−1 = Hn−1(∂F ).

In general, div z ∈ L∞∩BV but may be discontinuous as shown in [27], [28].
Since there may exist non-calibrable facets, it took a long time to construct
a solution in a general setting. G. Bellettini and M. Novaga [24] introduced
a notion of a solution based on distance function reflecting the variational
structure and proved its uniqueness. However, its existence is only proved
for convex initial data [18]. It is quite recent that the well-posedness problem
is settled by two groups through the level-set method, which is the main
topic of this survey.

Although there are several approaches to solve the problems by now, they
are roughly classified into three main ones. The first approach is to consider
a special class of evolving polygons by reducing the problem to a system of
ODEs we discussed before. This approach is valid only for curve evolution.
The second approach is a variational approach. A simple way is to apply
the theory of maximal monotone operators which is restricted for the graph
case but it has an advantage to apply to a higher order crystalline flow,
for example crystalline surface diffusion equation for a graph-like surface.
The reader is referred to [74] for this topic as well as Section 9.2. A variant
of this variational approach involving a distance function yields a global
well-posedness for convex sets as mentioned before [18].

The third approach is a viscosity approach. This is based on the theory of
viscosity solutions, which was originally introduced to characterize the value
function of a control problem as a solution of a Hamilton-Jacobi equations;
see [47]. The notion of a viscosity solution is based on a comparison principle
for the second-order elliptic or parabolic equations which can be degenerate.
It does not depend on a variational structure. However, since the crystalline
flow is non-local, one needs to adjust the theory. This is not trivial even
for an evolution of a curve. In the case of graph-like curves, i.e., Γt is given
as a graph w = w(x1, t), the notion of a viscosity solution was adjusted
for general crystalline flow when w is periodic in x1 [68], [70]. It can be
approximated by a smoother problem as proved in [71].

This viscosity approach was later extended to a closed curve by adjust-
ing the level-set method [73], [72]. The original level-set method based on
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Figure 3. Example of a fattening in the crystalline flow for
σ(p) = |p1| + |p2| with initial curve Γ0 given by the figure-8-
shaped solid line. The set Γt immediately (t > 0) fattens. The
gray area denotes Γt at t = 0.8t∗ where t∗ is the extinction
time of the individual squares.

the theory of viscosity solution was introduced by [60], [45] for the mean
curvature flow equations. The idea of the original level-set method for the
mean curvature flow V = κ is to consider its level set flow equation

ut − |∇u| div
(

∇u
|∇u|

)
= 0

which requires that each level set moves by V = κ. For a given initial
hypersurface Γ0, one constructs a continuous function u0 such that Γ0 is
the zero level set of u0 and solves the level-set flow equation globally-in-
time and sets Γt as the zero level set of the solution. A unique solvability
is guaranteed by the theory of viscosity solutions. Moreover, Γt is uniquely
determined by Γ0. However, as already pointed out in [60], Γt may have
interior even if Γ0 has no interior, Figure 3; see also [83]. This phenomenon
is called fattening and from the point of an evolution of hypersurfaces this is
considered a non-uniqueness phenomenon. A basic merit of this approach is
to handle a topological change. The generalized solution Γt of course agrees
with a smooth solution if the latter exists though the proof is less trivial
[60], [84]. For a general theory of the level-set method for smooth anisotropy,
see [45] or a book [83]. The level-set method itself was introduced by [145]
for numerical study and independently by [143] to explain a scaling law of
V = κ. For the development of the numerical approach, see [150] and [144].

It took quite a long time to extend this theory to evolution of a hypersur-
face mainly because the crystalline curvature κσ may not be a constant on
a facet. A first breakthrough is done by [81], where the viscosity theory was
extended to a total-variation-flow-like equation; see also [80]. Later it was
extended to level-set flow equations, [91], [92], and to the case when there is a
spatially inhomogeneous driving force term [93]. In the meanwhile, another
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approach to construct a level-set flow based on distance functions which
goes back to [151] was developed independently. In fact, A. Chambolle, M.
Morini and M. Ponsiglione [42] constructed a level-set flow for V = σκσ for
very general σ containing crystalline σ as a special case. With M. Novaga
they even extended their approach in [40] for more general equations with
mobility and spatially inhomogeneous driving force term. In both theories,
the theory of maximal monotone operators is reflected in some sense. In the
purely viscosity approach by [91], [92], [93], the value κσ is defined as the
minimal section of the crystalline interfacial energy. In the approach by [42],
[40], the distance function from the zero level-set of a solution is interpreted
as a supersolution of the original gradient flow of the form ut ∈ −∂E(u),
where E is an anisotropic total variation energy with density σ.

We warn the reader that the value κσ is not determined completely by
the facet F if the problem is spatially inhomogeneous as pointed out by [93].
If there is a non-constant driving force C = C(x), then κσ+C is not just the
sum of the two quantities. See [93] for more details and futher references.

We do not intend to cover all topics related to well-posedness for a crys-
talline flow. Several interesting topics like a crystalline multi-phase curva-
ture flow are missing in this paper. For a multi-phase crystalline flow, see
[21].

This paper is organized as follows. In Section 2, we give several model
equations for curvature flow equations involving a crystalline curvature. In
Section 3, an evolution of a polygon is discussed. In Section 4, some explicit
solutions such as self-similar solutions are discussed. In Section 5, we give
an approach by the theory of maximal monotone operators. In Section 6,
we give an approach based on viscosity solutions. In Section 7, we give an
approach based on distance functions. In Section 8, some numerics are given.
In Section 9, examples of a fourth-order problem and a volume-preserving
flow are discussed.

2. Some models

We begin with second-order models in materials sciences. There is an
axiomatic derivation of evolution laws of phase-interfaces involving bulk
energy and surface energy with constitutive relation compatible with ther-
modynamical laws in [10], [99]. Its explicit form is

b(ν, V )V = κσ − f with b(ν, V ) ≥ 0

where f is a driving force term coming from bulk interface difference which
is assumed to be a constant in [10], [99]. The function b is called a kinetic
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coefficient. If b(ν, V ) is independent of V and positive, then it is reduced to

V =M(ν)(κσ + C)

with C = −f , M(ν) = b(ν)−1. If b(ν, V ) is taken so that

b(ν, V )V = log(1 + V )

with f = 0, this is nothing but the model of thermal grooving of a surface
due to evaporation-condensation proposed by W. W. Mullins [137]. Here is
a way of derivation. The Gibbs-Thomson law reads

log(p/p0) = β(−κσ)

with a positive constant β > 0. Here p is the pressure and p0 is the atmo-
spheric pressure. The evolution law is

V =M(ν)(p0 − p).

If M(ν) ≡ 1, p0 = 1, then one gets

(2.1) V = 1− exp(−βκσ).

If the right-hand side is linearized around κσ = 0, we get V = βκσ. See
the discussion by N. Hamamuki [101]. As we will see later in this section,
a model similar to V = κσ was introduced by H. Spohn [152] when σ is a
kind of crystalline anisotropy to model evaporation-condensation below the
roughening temperature.

Another source of equations stems from image processing. An axiomatic
derivation is provided by [4]. For curve evolution, equation

(2.2) V = |κσ|α−1, κσ α > 0

is important especially with α = 1/3, where the evolution law is invariant
under affine transform (not only under rotation, dilation and translation)
when σ is isotropic. In higher dimensional case, the corresponding equation
should be V = K1/(n+1) where K is the Gauss curvature not the mean cur-
vature. A crystalline Gaussian curvature flow V = Kσ has been studied to
approximate the Gaussian curvature flow; see e.g. [163]. However, we do not
touch this topic in this paper. There are many examples of curvature flows
(see e.g. [83, Chapter 1]). In the case that the mean curvature is involved
like the inverse mean curvature flow equation, it is easy to generalize

V = −1/κσ.

If σ is isotropic, then the equation was used to prove the positive mass
conjecture [105] since the Geroch mass is monotone under this flow.
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We note that the total variation flow

wt = div′ (∇′w/|∇′w|)

can be understood as a particular case of V = M(ν)κσ as discussed in the
introduction for evolution of graph-like curves. If an evolving surface Γt is
given as the graph of w = w(x′, t), x′ ∈ Rn−1, the total variation flow for w
can be written as

V =M(ν)κσ

with

σ(p) = |p′|+ |pn| with p = (p′, pn),

M(ν) = νn with ν = (ν ′, νn).

Here ν ′ = −∇′w/ (1 + |∇′w|2)1/2 and νn = 1/ (1 + |∇′w|2)1/2.
The model proposed by H. Spohn [152] is almost the same. Here w

denotes the height of the crystal surface at x′ and at time t. It is of the form

wt = div′ (∇′w/|∇′w|) + β div′ (|∇′w|∇′w) ,

where β > 0 is a constant. If one writes it in the form of a surface evolution,
it is

V =M(ν)κσ

with σ(p) = |p′|+ β|p′|3/ (3|pn|2) + |pn|.
There are several fourth-order models. For relaxation of crystal surface,

a fourth-order total variation type equation is proposed by [152]. Its explicit
form is

wt = −∆′ (div (∇′w/|∇′w|) + β div (|∇′w|∇′w)) ,

where ∆′ denotes the Laplacian in x′ variable, i.e., ∆′ = div′ grad′ = ∇′ ·∇′.
This equation is derived as a continuum limit of models describing motion of
steps on crystal surface as discussed in [142], where a numerical simulation
is given. This model describing step-motion is microscopic in the direction
of height but macroscopic in the horizontal direction. We refer the reader to
a nice review article by R. V. Kohn [120] on this issue. Of course, if β = 0,
this is nothing but the fourth-order total variation flow. This is popular
for image processing. For example, Osher-Solé-Vese [146] model gives the
fourth-order total variation flow of the form

ut = −∆div (∇u/|∇u|) + λ(f − u)

for λ > 0, and given f . See also [56] for such a flow, where the well-posedness
of the equation is proved by using the Galerkin method. For relaxation phe-
nomena, W. W. Mullins [137] introduced a surface diffusion flow equation;
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see also [35] for derivation. It is of the form

V = − divΓt j, j = − gradΓt
ρ

log(ρ/ρ0) =
kµ

T
, µ = κσ,

where T is a given temperature and ρ0 is an equilibrium density; k is a
positive constant. The quantity j is the mass flux and µ is the chemical
potential. The resulting equation is

(2.3) V = ∆Γt exp(−kκσ/T ), ∆Γ = divΓ gradΓ;

here, ∆Γ denotes the Laplace-Beltrami operator on the surface Γ. We shall
set k = 1, T = 1 for simplicity of presentation to get

V = ∆Γt exp(−κσ).

If one linearizes around κσ = 0, the resulting equation is

V = −∆Γtκσ.

If V is replaced by an upward velocity and ∆Γt is replaced by ∆′ for the
graph of w, then the equation becomes the fourth-order total variation flow
if σ(p) = |p′|, i.e.,

wt = −∆′ (div′ (∇′w/|∇′w|)) .
One significant property of the surface diffusion flow is the preserving

property of the volume (area) enclosed by Γt. This is not the case for the
second-order problem. However, one is able to consider a volume-preserving
crystalline curvature flow, which is a nonlocal equation. For example, the
volume-preserving version of (1.1) is of the form

V = κσ −
1

Hn−1(Γt)

∫
Γt

κσdHn−1

so that
∫
Γt
V dHn−1 = 0. See Section 9.1 for more discussion of the volume-

preserving problem.

3. Polygonal flow

In this section, we consider a special class of a polygonal flow called
admissible introduced by J. Taylor [156] and S. B. Angenent and M. E.
Gurtin [10] for a planar purely crystalline curvature flow equation.
Admissible polygonal flow. We first introduce a special class of polygonal
flows associated to a purely crystalline anisotropy σ. Let Wσ denote the
Wulff shape corresponding to σ. Since the anisotropy σ is purely crystalline,
Wσ is a bounded, convex polygon containing the origin as an interior point,
but it does not need to be symmetric with respect to the origin since σ is
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S +1
0

−1

nS

Figure 4. Value of χ based on the convexity/concavity near
the facets.

not assumed to be even. Let N be a finite subset of the unit circle so that
it is the set of all orientations (exterior normals) of edges on the boundary
∂Wσ of Wσ. We call N the set of admissible directions. This set can be
written as

N = {nk}mk=1 with nk = (cos θk, sin θk)

with 0 ≤ θ1 < · · · < θm < 2π. The set Θ = {θk}mk=1 is called the set
of admissible angles, which is considered as a subset in T = R/2πZ. For
example, θ1, θm−1 are adjacent to θm. We say that an (oriented) polygon is
admissible if

(i) (direction condition) the orientation of each facet (edge) is in N ;
(ii) (adjacence condition) the angles of orientations of adjacent facets

should be adjacent.
An evolving polygon {Γt}t∈I is an admissible polygonal flow if Γt is an
admissible polygon for t ∈ I and the motion of all vertices is C1 in time
t ∈ I, where I is a time interval.
Crystalline curvature. Since the Wulff shape is a substitute of the unit
disk, it is natural to postulate that κσ = −1 on ∂Wσ. Let ∆(n) denote the
length of a facet (edge) of ∂Wσ whose orientation equals n. For a general
admissible polygon Γ, let S denote one of its facets. By the ansatz for curve
evolution, κσ on S must be a constant and its value must be a kind of
Cheeger ratio. In our setting on S with orientation nS, it is natural to
assign

κσ = χ∆(nS)/L,

where L is the length of the facet S and χ is a transition number, i.e.,
χ = +1 (resp. −1) if Γ is convex (concave) in the direction of nS near S,
and otherwise χ = 0; see Figure 4. By this definition, κσ = −1 on ∂Wσ since
nS is taken outward from Wσ; this is the outward curvature. We measure
the curvature by comparing with the Wulff shape, which is consistent with
the definition of the usual curvature by the inverse of the radius of the
osculating circle called a circle of curvature. This quantity κσ is often called
a crystalline curvature.
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sinφj

Vj cotφj+1
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Vj+1

φj+1

φj

Figure 5. Situation near facet j with nj pointing up.

Derivation of a system of ODEs. Let {Γt}t∈I be an admissible polygonal
flow such that for t ∈ I, Γt is an ℓ-polygon consisting of facets {Sj(t)}ℓj=1

numbered counterclockwise and vertices of Sj(t) whose motion is C1 in time.
Let Vj(t) denote the normal speed of Sj(t) in the direction of the orientation
nj of Sj(t). We consider a general form of the equation

(3.1) V = g(ν, κσ)

with g non-decreasing in the second variable so that the problem is at least
degenerate parabolic. For an admissible polygonal flow, this equation is
formally reduced to

(3.2) Vj(t) = g (nj, χj∆(nj)/Lj(t)) , j = 1, . . . , ℓ,

where Lj(t) is the length of Sj(t) and χj is the transition number of Sj(t).
By an elementary geometry Fig. 5, we observe that

dLj(t)

dt
=− 1

sinφj
Vj−1(t) + (cotφj + cotφj+1)Vj(t)

− 1

sinφj+1

Vj+1(t), j = 1, . . . , ℓ,

(3.3)

where φj = θj − θj−1 and θj is the angle of nj, i.e.,

nj = (cos θj, sin θj).

We use the convention that the indices are considered modulo ℓ, i.e., we
identify θℓ+j = θj. We conclude (3.2) and (3.3) to get a system of ℓ ODEs
for Lj’s. The initial value problem of this system is locally-in-time solvable
for example when g is C1 in the second variable. The resulting admissible
polygonal flow is called a crystalline flow. This idea is introduced by J.
Taylor [156] for V = σκσ and S. B. Angenent and M. E. Gurtin [10] for
V =M(ν)(κσ + C); both examples are introduced in Section 2.
Starting from a general polygon. If one considers a polygon whose
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Γt
nA

Γ

nB

nB nC

∂Wσ

nA

Figure 6. Example of an evolution of a initial polygon Γ
with facets with nonadjecent orientations.

orientation belongs to N but violates the adjacence condition, it is expected
that new facets with “missing directions” are created from a corner. To be
more precise, let us consider the equation

V = κσ.

We consider adjacent facets SA, SB of a polygon Γ whose angles θA, θB of
orientation nA, nB are not adjacent; see Figure 6. In other words, there are
missing admissible angles between θA and θB. If SA and SB do not move,
i.e., they are stationary, it is expected that there is a unique self-similar
expanding crystalline flow which converges to SA ∪ SB as time tends to
zero. The unique existence of such a self-similar expanding crystalline flow
has been claimed in a pioneering work by J. Taylor [160, Proposition 2.2
(1)]. However, unfortunately, the proof skips over important details. Here,
by self-similar we mean that the flow Γt is of the form Γt = t1/2Γ∗ with some
admissible Γ∗; we here assume that the vertex connecting SA and SB is the
origin by translation. Note that Γ∗ may not be a part of the Wulff shape
as observed in a numerical calculation [103]. The unique existence of such
a self-similar expanding solution is proved in D. Campbell [36] in the case
that Wσ is a regular polygon and in [77] for general Wσ. This problem is
reduced to solving a system of algebraic equations and methods presented
in [36] and [77] are quite different. Approximating by such a self-similar
expanding solution, one is able to construct an expanding solution even if
SA and SB are moving. This is carried out by Y. Ochiai [141] for V = κσ

and is extended to an equation including V =M(ν)(κσ +C) by R. Kuroda
[124]; see also [78] for a complete proof for more general equations.

Although there is a large number of articles studying crystalline flows,
this type of facet creation problems are not discussed frequently. A facet
creation problem was observed in [70] and further developed in [132], [133],
[134] mostly for graph-like solutions. However, the number of newly created
facets in one point is just one. This aspect is quite different from works by
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[160], [36], [77], [141], [124], [78], where several facets are created from one
point (corner).

On the other hand, it is not difficult to handle the case when the direc-
tion condition is violated. In this case, we just regard ∆(n) = 0 for such
directions. Such a facet is preserved at least for a short time, so we may call
such a polygonal flow satisfying “adjacence condition” a weakly admissible
polygonal flow [67].
Behavior of convex crystalline flow. If the initial polygon is a con-
vex (admissible) polygon, the behavior of a solution (crystalline flow) has
been well-studied for V = M(ν)κσ. It is easy to see that the convexity is
preserved.

(i) The case when M is parallel to σ, i.e., M(ν) = cσ(ν) with some
c > 0. It is easy to see that there always exists a self-similar solution
shrinking to a point whose profile is the Wulff shapeWσ. By a spatial
translation, this solution can be written as Γt = (2c)1/2(T−t)1/2∂Wσ,
where T is the extinction time. The uniqueness of a self-similar so-
lution is proved when the Wulff shape Wσ is symmetric with respect
to the origin and the number of its vertices is larger than four in
[153]; in the case Wσ is a parallelogram, all parallelograms shrink
self-similarly; see the next section for an explicit solution. Moreover,
it is shown in [153] that all convex solutions shrink asymptotically
similarly to the self-similar solution. These results are parallel to
those for conventional curve shortening flow as established in [64],
[65], [50], [49].

(ii) The case whereM is unrelated to σ. In this case, the situation is com-
plicated as discussed in [154], [9]. In [9] a rather complete picture is
given. We first consider the orientation-free case i.e., M(n)∆(n) =

M(−n)∆(−n) for n ∈ N where N = −N . In this case, there are
two possibilities. Either phenomenon similar to (i) occurs or there
is no self-similar shrinking solution and the isoperimetric ratio of
a solution may tend infinity [9]. Moreover, in the second case it is
shown in [9] that the minimal length of facets at time t behaves like
{(T − t)/ log(t− t)}1/2 or (T − t)β, 1/2 < β < 1 as t tends to T ,
where T is the extinction time. For a self-similar solution, the length
should behave like (T − t)1/2 so, in the second case, it is shorter than
that of a self-similar solution. This has a strong contrast compared
to the conventional orientation-free anisotropic curvature flow, where
all flows shrink in a self-similar way. This indicates that a qualitative
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property of a solution may differ from the conventional curve short-
ing equation depending upon the Wulff shape. If the motion is not
orientation-free, it is shown in [115] that a crystalline flow may not
become convex. There also exists a non-convex self-similar shrinking
solution when the Wulff shape is a square or a regular triangle for
V =Mκσ with M unrelated to σ which is not orientation-free [115].

We next consider the equation V = |κσ|α−1κσ for α > 0. The situation
depends on the value of α. We have discussed the case α = 1. In the case
α ≥ 1, it is shown in [72] that there is no degenerate pinching at the
extinction time T . By degenerate pinching we mean that two parallel facets
touch with positive length at the extinction time. For α > 1, all (convex)
solutions shrink to a point in a self-similar way like (i) [9]. If α < 1, a
degenerate pinching may happen and there is a solution whose enclosed area
tends to zero but the limit of the length remains positive [9]. For α < 1,
there also exists a non-convex self-similar solution for V =M |κσ|α−1κσ even
if the equation is orientation-free [115].

We now consider the case when the initial polygon does not fulfill the
direction condition but satisfies the adjacency condition with interpreta-
tion that ∆(ni) = 0 for a non-admissible direction of the initial polygon
and that ni belongs to N . In [169] a quite general results are established.
The equation considered there is V = g(ν, κσ) with g(ν, 0) = 0 which is
non-decreasing and locally Lipschitz in the second variable. By solving the
system of ODEs, we see that the number of facets is unchanged during
a short time. At some time either at least one of the facets with a non-
admissible direction disappears or the whole evolution shrinks to a point
[169].
Behavior of a general admissible polygon. If the initial polygon is ad-
missible but not convex, it must have an inflection facet, i.e., a facet with
χ = 0. There is a crystalline flow with such initial data until the length of
some facet tends to zero. It is already proved in [160, Theorem 3.2] that for
the equation V = σκσ, at such occasion only at most two adjacent inflection
facets disappear unless the flow shrinks to a point. However, the proof there
is rather sketchy. In [107] a full proof is given when Wσ is a regular polygon
with an even number of facets. The resulting polygon at the time when
infection facets disappear stays admissible, so one can extend a solution as
a crystalline flow until it loses another facet. We are able to complete this
procedure until it shrinks to a point. Such an extended flow is called an
extended crystalline flow.
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For the curve shortening equation V = κ, it is shown that the solution
(flow) becomes convex in finite time [98]. It seems that the corresponding re-
sult is not established even whenWσ is symmetric with respect to the origin
and the equation is V = σκσ. To the best of our knowledge, the (extended)
crystalline flow (after losing several inflection facets) becomes almost con-
vex in the sense that all facets have positive crystalline curvature possibly
except two adjacent inflection facets for V = σκσ with symmetric Wσ as
shown in [108].
Equations with a driving force term. We next consider the equation
V = M(ν)(κσ + C), where C is a constant. This equation is sometimes
called the eikonal curvature flow equation. There are several new phenom-
ena in this equation compared to the case C = 0. For example, this motion
certainly depends on the orientation. If C is taken positive and ν is taken
outwards, it grows to the whole plane in infinite time provided that the
polygon is sufficiently large. The large time behavior of an (extended) crys-
talline flow is studied in [75] with special emphasis on the anisotropic effect
of mobility M and σ. For V -shaped initial data, its evolution was studied
in [110], [111]. A crystalline flow is also applied to the study of a growth of
spirals since the work of [112], which is further developed in [113]. Various
methods for the numerical computation of the crystalline flow are compared
in [114].
A few remarks on consistency and stability. If the initial data is given
as the graph of a periodic piecewise linear function, for V = M(ν)κσ the
theory of maximal monotone operators applies to construct a solution [63].
This notion of a solution is consistent with the (extended) crystalline flow;
see also [52] where a numerical scheme based on a variational inequality is
given.

Note that the crystalline flow satisfies a comparison principle or an order
preserving property. It reads that if an admissible polygon Γa is enclosed
by another admissible polygon Γb, then the corresponding crystalline flows
{Γat } and {Γbt} starting from Γa and Γb, respectively, have the same prop-
erty, i.e., {Γbt} encloses {Γat } as far as both exist; see [160] and [85]. This is
easily seen by comparing their crystalline curvatures. Based on this prop-
erty, one is able to establish a notion of viscosity solutions. This was first
introduced in the case where Γt is given as the graph of a periodic func-
tion [70]; see also [68] and its consistency with an (extended) crystalline
flow already discussed in [67]. Moreover, their solution can be obtained as
a limit of a smoother problem, i.e., the problems where σ is smooth [71].
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This stability property applies for a variational solution [63]. Note also that
in both frameworks solutions with a smooth σ can be approximated by a
crystalline flow [63], [71]. This gives a numerical algorithm to solve a smooth
anisotropic curvature flow or even the heat equation by approximating it
by crystalline flows. This topic is studied in [63], [96], [71] for a graph-like
solution. In [96] a convergence rate is also given. The approach by viscosity
solution is extended to closed curves through a level-set method [73] and
its consistency is discussed in [72]. The stability is also discussed in [73].
Among other results, a solution with a smooth σ can be approximated by
extended crystalline flows. It is proved for V = κ in [95] for convex curves
with convergence rate and in [107] for a general curve. In [73] such sta-
bility is discussed for a general equation V = g(ν, κσ). Note that it is also
shown in [73] that an extended crystalline flow is a limit of flows of problems
with smooth anisotropy. More precisely, if Wσ is close in the sense of the
Hausdorff distance, the solution must be close (up to fattening).

When one discusses consistency for equations with driving force term
like the eikonal-curvature flow V = M(ν)(κσ + C), one should be careful
to handle corners. If we consider just the eikonal equation V = C > 0 for
a bounded convex polygon, it is expected that the solution will be rounded
following the Huygens principle. To preserve corners, one has to restrict
the mobility M(ν). We consider a general equation V = g(ν, κσ). Let us
explain the corner preserving condition explicitly stated in [75, Lemma 4.1,
Lemma 4.2]. We say that g satisfies the corner preserving condition if for
each nk ∈ N

g(m, 0) =
1

sinφk+1

(g(nk, 0) sinψk+1 + g(nk+1) sinψk)

for all m = (cos θ, sin θ) with θk < θ < θk+1, where φk+1 = θk+1− θk and ψk
(resp. ψk+1) is the angle between nk (nk+1) and m so that φk+1 = ψk+1+ψk.
Geometrically speaking, this condition can be written as

Ak ⊂
{
x ∈ R2 | x ·m ≤ g(m, 0), m = (cos θ, sin θ), θk < θ < θk+1

}
⊂ Bk

with

Ak = Hk∩Hk+1, Bk = Hk∪Hk+1, Hk+j =
{
x ∈ R2 | x · nk+j ≤ g(nk+j, 0)

}
.

If Γ is convex with outward orientation, we only need the inclusion of Ak.
In other words, in the above identity the equality should be replaced by
≥ so that g(m, 0) is always larger than the right-hand side. This condition
says that in the corner all segments whose orientation is between that of
facets forming the corner move faster than corner facets for V = g(ν, 0).
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R0∂Wσ

Figure 7. Timesteps Γit∗/20, i = 0, 1, . . ., of a homethetic
Wulff shape solution of V = σκσ. Note that even though κσ
is a constant on Γt, the edges further from the origin move
faster due to the mobility factor σ and the solution is homo-
thetic.

This condition is first pointed out explicitly by [82] and independently by
[100]. It is stated in a different from in [67]. The geometric version is found
in [72]; however, unfortunately, the definition of Bk was mistyped.

We shall postpone the definition of viscosity solutions to Section 6. We
note that the theory covers a wide range of σ not necessarily purely crys-
talline in planar case for general equation V = g(ν, κσ) including (2.1), (2.2),
while in higher dimension, for such setting it is limited for purely crystalline
σ for general equations; see Section 6. In [73] it is only assumed that Fσ is
convex, C2 except finitely many vertices and the curvature is bounded.

Although the approach by admissible polygonal flow is convenient to
study planar curvature flow equations, it is limited because it implicitly
requires that the speed of a facet is spatially constant. For example, even in
R2 if one considers the equation with spatially inhomogeneous driving force
like

V =M(ν) (κσ + f(x)) ,

then it is not appropriate to assign the speed of a facet as a spatially constant
to obtain a comparison principle. For a graph-like solution with special M ,
as a variational solution several facet-breaking solutions are given in [69].

4. Explicit solutions

In this section we give examples of a few interesting explicit solutions to
illustrate the behavior of the equations.

The simplest solution of the crystalline mean curvature flow is the homo-
thetic (self-similar) solution starting from the Wulff shape, Fig. 7, that can
be translated and scaled. Rotations are of course not allowed. As noted in
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the introduction, the crystalline mean curvature on the surface of the Wulff
shape Wσ is the constant n − 1; here, the orientation (normal) is taken
inward. Therefore

Ωt =
√
R2

0 − 2(n− 1)t Wσ

is a solution of the crystalline mean curvature flow V = σ(ν)κσ for any
R0 > 0 on the interval t ∈ [0, t∗), where t∗ =

R2
0

2(n−1)
is the extinction time.

Note the factor σ(ν) in the velocity law. The (inner) normal velocity of
R(t)Wσ at a boundary point x with inner unit normal ν is −R′(t)x · ν =

−R′(t)σ(ν)R(t).
One might ask whether the above solutions are the only homothetic

solutions of the flow. This is however not always the case as the following
simple example illustrates. We consider n = 2 and the anisotropy σ(p) =

|p1|+ |p2| = ∥p∥1. Let Ω0 = (−a, a)× (−b, b) be a rectangle for some a > 0,
b > 0. Then Ωt = R(t)Ω0 for R(t) =

√
1− 2

ab
t is a solution of both V = σκσ

and V = κσ. In n = 2, the uniqueness of the Wulff shape homothetic
solution was proved by Stancu [153] for even anisotropies σ when (so that
the problem is orientation-free) the Wulff shape Wσ is not a quadrilateral
as mentioned in Section 3 (i).

A related question is whether a solution starting from an arbitrary con-
vex initial data will asymptotically approach the homothetic Wulff shape
solution as in the case of the usual mean curvature flow. As mentioned in
Section 3 (i), this was shown again by Stancu [154] in n = 2 for even non-
quadrilateral anisotropies. The situation is much more complex in n > 2

and is studied in [139].
By an interpretation different from Section 3 (ii), we also mention that

for V = σκσ examples of non-convex homothetic solutions in n = 2 given
in [115] for non-even anisotropies σ, that is, σ(p) ̸= σ(−p) for some p. This
shows that one cannot in general expect that a non-convex connected initial
shape will become convex before the extinction time.

In dimensions n > 2 the situation is more complex and nonzero genus
explicit homothetic solutions are known. For example, for σ(p) = ∥p∥1 a
cube with a square-shaped hole along each axis is a homothetic solution,
Figure 8. See [148] for more details.

For examples of solutions of the related total variation flow see for ex-
ample [130, Sec. 5].
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Figure 8. Sponge-like homothetic solution of the crystalline
mean curvature flow in dimension 3 with σ(p) = ∥p∥1.

5. Approach by the theory of maximal monotone operators

5.1. Abstract theory. In this section we introduce the crystalline mean
curvature as a solution of a certain minimization problem. This interpreta-
tion is based on the theory of maximal monotone operators of Kōmura [123]
and Brezis [31].

Let us give a motivation for this point of view. It is natural to expect that
the crystalline mean curvature flow with anisotropy σ can be approximated
by anisotropic mean curvature flow with smooth anisotropies σm so that
σm → σ in some sense.

If Γ is a C2 surface in Rn and σm is a C2 smooth anisotropy, the
anisotropic mean curvature Γ at x ∈ Γ is given as div∇σm(∇u)(x) =

tr[∇2σm(∇u(x))∇2u(x)], where u is any C2 level set function of Γ in the
neighborhood of x with ∇u(x) ̸= 0.

Consider now the anisotropic total variation flow

ut − div∇σm(∇u) = 0

on L2(Tn), Tn = Rn/Zn, or more rigorously,

ut ∈ −∂Em(u),(5.1)

where

Em(v) :=

{∫
Tn σm(∇v) dx v ∈ BV (Tn) ∩ L2(Tn),
+∞ otherwise,

(5.2)

is the anisotropic total variation energy.
Since Em is a convex lower semicontinuous functional on the Hilbert space

L2(Tn) with a dense domain, the operator ∂Em is a maximal monotone
operator and the anisotropic total variation flow (5.1) has a unique solution
for any initial data in L2(Tn).

Suppose now that (σm)m≥1 is a sequence of C2 anisotropies that mono-
tonically converge to the crystalline anisotropy σ. Then it is known [12] that
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Em → E in the sense of Mosco convergence, see (1.7), where

E(v) :=

{∫
Tn σ(∇v) dx v ∈ BV (Tn) ∩ L2(Tn),
+∞ otherwise.

But Mosco convergence implies the convergence of the nonlinear semigroups
[12, Theorem 3.26] and [32, Theorem 3.2]: the solutions of (5.1) locally
uniformly converge to the unique solution u : [0,∞) → L2(Tn) of

du

dt
∈ −∂E(u(t)), t > 0,

u(0) = u0

(5.3)

for any initial data u0 ∈ L2(Tn).
As we will see below, ∂E(v) is in general multivalued even if ∇v ̸= 0

for typical crystalline mean curvature evolutions. Nevertheless, the unique
solution of (5.3) is right-differentiable at every t > 0, ∂E(u(t)) ̸= ∅ and
d+u/dt(t) = −∂0E(u(t)) for t > 0, where ∂0E(v) is the canonical restriction
or minimal section of the subdifferential ∂E(v), i.e., the unique element of
∂E(v) ⊂ L2(Tn) with minimal norm.

This strongly suggests that we should use−∂0E(v) as the definition of the
crystalline mean curvature to hope to obtain stability under approximation
by anisotropic mean curvature flow.

Fortunately the characterization of ∂E is well understood even for rather
general σ = σ(x, p), see [130] for example.

We include the proof here for completeness for σ = σ(p) and space
L2(Tn). We need to introduce a number of definitions.

The functional E(u) can be defined in two equivalent ways. The first one
is a generalization of the definition of the total variation,

E(u) := sup

{
−
∫
Tn

u div z dx
∣∣∣ σ◦(z) ≤ 1, z ∈ C1(Tn,Rn)

}
, u ∈ L2(Tn).

Note the minus sign since σ is not assumed even. The function σ◦ is the
support function of the Frank diagram Fσ = {σ ≤ 1}, i.e.,

σ◦(x) = sup {x · p | p ∈ Fσ}

so thatWσ = {σ◦ ≤ 1}. This E is clearly a convex, positively one-homogeneous,
lower semi-continuous functional on L2(Tn). It is known [5] that it is the
relaxation (closure or lower semicontinuous envelope) of the functional

J(u) :=

{∫
Tn σ(∇u) dx, u ∈ W 1,1(Tn) ∩ L2(Tn),
+∞, otherwise.

In fact E(u) = J(u) for any u ∈ W 1,1(Tn)∩L2(Tn). While [5] deals with L1

relaxation, it is not difficult to see that E is also the L2 relaxation. Indeed,
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we have E(u) =
∫
Tn σ(

Du
|Du|) d|Du| for any u ∈ BV (Tn) and E(u) = +∞

for u ∈ L2(Tn) \ BV (Tn), where Du
|Du| is the Radon-Nikodym derivative of

the Radon measure Du with respect to its total variation [130]. Then by
standard approximation of u ∈ BV (Tn) ∩ L2(Tn) there is a sequence uk ∈
W 1,1(Tn)∩L2(Tn) converging to u in L2 such that |Duk| → |Du|. For such
sequence we have E(u) = limk→+∞ E(uk) = limk→+∞ J(uk) by Reshetnyak’s
continuity theorem [149]. We conclude that E is the L2 relaxation of J .

To characterize the subdifferential, we here present a simplification of
the proof in [130], which itself is based on the unpublished note of F. Alter;
see also [7] for the proof when σ(p) = |p| and more details. The idea is based
on the characterization of the subdifferential using the polar of E defined as

E◦(v) := sup {(u, v) | u ∈ H, E(u) ≤ 1} = sup

{
(u, v)

E(u)

∣∣∣u ∈ H

}
,

where we set H := L2(Tn) the Hilbert space with the L2-inner product
(u, v) =

∫
uv dx. In the formula we use the convention 0

0
= 0, a

0
= +∞ for

any a > 0 and a
+∞ = 0 for any a ∈ R. Since E is positively one-homogeneous,

convex and lower semicontinuous, we have the following standard charac-
terization [7, Lemma 1.7]:

v ∈ ∂E(u) ⇔ E◦(v) ≤ 1 and (v, u) = E(u).(5.4)

We will show that E◦ coincides with the functional

Ψ(v) := inf {∥σ◦(z)∥∞ | v = − div z, z ∈ L∞(Tn)}, v ∈ H.(5.5)

The equality v = − div z is understood in the sense of distributions: the
function −v is the distributional divergence of z. For the discussion of prop-
erties of Ψ, see Lemma A.1 in Appendix A below. In particular, Ψ is again a
convex, positively one-homogeneous, lower semicontinuous functional. For
any such functional we have (Ψ◦)◦ = Ψ [7, Proposition 1.6]. Moreover, if
Ψ(v) < ∞ the infimum is attained by a vector field and hence it is a mini-
mum.

Theorem 5.1. The equality E◦ ≡ Ψ holds.

Proof. ≤ : Take v ∈ H withΨ(v) <∞ and fix z ∈ L∞(Tn) with div z = −v.
Since E is the lower semicontinuous envelope of J , for any u ∈ H with
E(u) ≤ 1 there is a sequence (uk)k ⊂ W 1,1(Tn) ∩H with uk → u in H and
J(uk) = E(uk) → E(u). We have

(uk, v) =

∫
z · ∇uk dx ≤

∫
σ◦(z)σ(∇uk) dx

≤ ∥σ◦(z)∥∞
∫
σ(∇uk) dx = ∥σ◦(z)∥∞ E(uk).
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In the limit k → ∞ we obtain

(u, v) ≤ ∥σ◦(z)∥∞ for all u ∈ H with E(u) ≤ 1.

Thus by definition of Ψ we deduce E◦(v) ≤ Ψ(v).
≥ : Fix u ∈ H. By definition we have

E(u) = sup

{
−
∫
u div z dx

∣∣∣ σ◦(z) ≤ 1, z ∈ C1(Tn,Rn)

}
= sup

z∈C1

(u,− div z)

∥σ◦(z)∥∞
≤ sup

z∈C1

(u,− div z)

Ψ(− div z)

≤ Ψ◦(u),

where we again use 0/0 := 0. We deduce E◦ ≥ (Ψ◦)◦ = Ψ. □

We now have the following characterization of the subdifferential for
Lipschitz functions. For the general characterization we refer the reader to
Theorem 12 in [130].

Corollary 5.2. Let u ∈ Lip(Tn) and v ∈ L2(Tn). The following are equiv-
alent:

• v ∈ ∂E(u)
• there exists z ∈ L∞(Tn) with v = − div z such that z ∈ ∂σ(∇u) a.e.

Proof. ⇒ : v ∈ ∂E(u) implies that E◦(v) ≤ 1 and E(u) = (u, v). In particu-
lar by Theorem 5.1 there exists a vector field z ∈ L∞(Tn) with v = − div z

and ∥σ◦(z)∥ = E◦(v) ≤ 1. We have

∇u · z ≤ σ(∇u)σ◦(z) ≤ σ(∇u) a.e.

However, E(u) = (u, v) and therefore∫
σ(∇u) dx =

∫
uv dx =

∫
∇u · z dx,

and so we can deduce that∇u·z = σ(∇u) a.e., which coupled with σ◦(z) ≤ 1

a.e. implies z ∈ ∂σ(∇u) a.e.
⇐ : The opposite implication can be proved by reversing the above

steps. □

The vector fields z play a central role and we define

X2(U) :=
{
z ∈ L∞(U) | div z ∈ L2(U)

}
,

for U ⊂ Rn open or U = Tn, following [11]. The vector fields that char-
acterize the subdifferential are often called Cahn-Hoffman vector fields and
we define

CH(u;U) :=
{
z ∈ X2(U) | z ∈ ∂σ(∇u) a.e.

}
(5.6)
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for any u ∈ Lip(U). Note that if U = Tn, by Corollary 5.2

−∂E(u) = divCH(u;Tn) := {div z | z ∈ CH(u;Tn)}.

Recall that this is a closed convex set, but it might be empty.
Since the set ∂E(u) is in general not a singleton, we need to determine

how to select a value that gives a reasonable generalization of the anisotropic
mean curvature to the crystalline case. The theory of maximal monotone
operators suggests that we should choose the unique element of−∂E(u) with
the smallest L2-norm. We will denote this element −∂0E(u) if ∂E(u) ̸= ∅,
since it is the projection of the origin 0 on the convex closed set −∂E(u).
Example 5.3. Suppose that σ ∈ C2(Rn \{0}) and u ∈ C2(Tn). Let x ∈ Tn

with ∇u(x) ̸= 0. Then ∂σ(∇u) = {∇σ(∇u)} in the neighborhood of x and
therefore if z ∈ CH(u;Tn) we necessarily have div z(x) = div∇σ(∇u)(x).

As was shown in the introduction, the element −∂0E(u) is a solution
of a minimization problem with an n-dimensional obstacle z ∈ ∂σ(∇u).
The value of the minimizer div zmin can depend nonlocally on u whenever
∂σ(∇u) is not a singleton, as is illustrated in the introduction. However this
nonlocality is restricted to “flat” parts of u. Those correspond to facets and
edges of the evolving crystal. The following technical “patching” lemma was
proved in [91, Lemma 2.8]. Let 1E denote the characteristic function of E,
i.e., 1E(x) = 1 for x ∈ E and 1E(x) = 0 for x /∈ E.

Lemma 5.4. Let σ : Rn → R be a positively one-homogeneous convex
function. Let U1, U2 be two open subsets of Rn and ψi ∈ Lip(Ui) two
Lipschitz functions. Let δ > 0 and set G := {x ∈ U1 | |ψ1(x)| < δ}. Suppose
that G ⊂ U1 ∩ U2 and ψ1 = ψ2 on G. If zi ∈ CH(ψi;Ui) are two Cahn–
Hoffman vector fields, then

z := z11U1\G + z21G

is also a Cahn–Hoffman vector field z ∈ CH(ψ1;U1), and

div z = div z11U1\G + div z21G.

We add the following simple observation that follows from |{0 < |ψ1| < δ}| →
0 as δ → 0. Note that we still need ψ1 = ψ2 on a neighborhood of {ψ1 = 0}.

Corollary 5.5. Under the assumptions of Lemma 5.4,

z := z11U1\{ψ1=0} + z21{ψ1=0}

is also a Cahn–Hoffman vector field z ∈ CH(ψ1;U1), and

div z = div z11U1\{ψ1=0} + div z21{ψ1=0}.
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The above lemma shows that we can isolate div zmin on a neighborhood
of {ψ = 0}. This is necessary to have some locality of the crystalline mean
curvature which allows us to localize the construction of test functions to a
given facet.

We conclude this section by an important way of approximating the
values ∂0E(ψ). Let us now fix the domain Tn for simplicity. For a given
ψ ∈ L2(Tn) and a > 0, we consider the resolvent problem

v + a∂E(v) ∋ ψ(5.7)

in the unknown v ∈ L2(Tn). This can be viewed as the implicit Euler dis-
cretization of the gradient flow (5.3). It is also the Euler–Lagrange equation
of the minimization problem

argmin
v∈L2(Tn)

∥v − ψ∥2L2(Tn)

a
+ E(v),

which appears in an important discrete approximation of the crystalline
mean curvature flow, Chambolle’s scheme discussed in Section 6.4.

We have the following standard existence and approximation result that
is valid for any convex proper lower semi-continuous functional like E , see
for example [12].

Proposition 5.6. For every ψ ∈ L2(Tn) and a > 0 the resolvent problem
(5.7) has a unique solution ψa ∈ L2(Tn) and ψa → ψ as L2(Tn).

If furthermore ∂E(ψ) ̸= ∅, then
ψa − ψ

a
→ −∂0E(ψ) in L2(Tn) as a→ 0.

The solutions also satisfy a comparison principle, see [38] for a proof.

Proposition 5.7. If ψ1, ψ2 ∈ L2(Tn) are two right-hand sides with ψ1 ≤ ψ2

and a > 0, we have ψ1
a ≤ ψ2

a where ψ1
a and ψ2

a are the respective solutions
of (5.7).

5.2. Calibrability and Cheeger sets. As we already briefly mentioned
in the introduction, the minimization problem one needs to solve to find
the value ∂0E(ψ) for a given ψ has interesting connections to the so-called
Cheeger problem for sets. For a given open set U ⊂ Rn, define the Cheeger
constant as

h(U) := inf

{
P (F )

Ln(F )
: F Borel ⊂ U, Ln(F ) ∈ (0,∞)

}
,

where P (F ) = E(1F ) is the anisotropic perimeter of F . Usually the isotropic
σ(ν) = 1 is considered, in which case this is just the usual perimeter equal to



MOTION BY CRYSTALLINE-LIKE MEAN CURVATURE: A SURVEY 31

Hn−1(∂F ) for sufficiently regular sets. A set F ⊂ U such that P (F )
Ln(F )

= h(U)

is called a Cheeger set of U . If U itself is a Cheeger set of U , it is called
self-Cheeger. Finding the value h(U) or characterizing the Cheeger subsets
of U is then often referred to as the Cheeger problem. For a recent review
of this topic see [126].

In the current note, the question whether a given set U is self-Cheeger
is closely related to the questions whether the value of ∂0E(ψ) is constant
on a facet U of ψ. If ∂◦E(ψ) is constant on a given facet, the facet is called
calibrable or σ-calibrable, see [26] and also [20].

We point out that this notion of calibrability is slightly weaker than the
notion used in the context of total variation flows [3, 126]. There an open
bounded set U is called calibrable if the total variation flow (5.3) with initial
data 1U has the unique solution a(t)1U with a(t) = max(1− P (U)

Ln(U)
t, 0). This

therefore implies that ∂0E(1U) is constant on U and on U c.
We use the former notion of calibrability. The following theorem in a

more general setting (but still only in dimension n = 2), including non-
uniform forcing, was proved in [26, Th. 6.1]. See also [6] for further devel-
opments.

Theorem 5.8. Let n = 2 and let σ be an even anisotropy on R2, σ(p) =
σ(−p). Suppose that ψ ∈ Lip(R2) is such that CH(ψ;R2) is nonempty.
Let U be a bounded connected component of int {ψ = 0}. The following are
equivalent:

(i) U is calibrable (∂0E(ψ) is constant on U)
(ii) for any F ⊂ U of finite perimeter

SP (F )

L2(F )
≥ SP (U)

L2(U)
.(5.8)

Here SP (F ) is the signed perimeter of F defined using the reduced
boundary ∂∗F as

SP (F ) =

∫
∂∗F+

σ(ν) dH1 −
∫
∂∗F−

σ(ν) dH1,

with ∂∗F− := {x ∈ ∂∗F ∩ ∂∗U : νU(x) · ∇ψ(x) < 0} and ∂∗F+ :=

∂∗F \ ∂∗F−.

The quantity SP (U)
Ln(U)

is a generalization of the usual Cheeger ratio P (U)
Ln(U)

to
facets: sets with signed boundary whose sign is determined by whether the
surface at the boundary point is convex or concave in the normal direction
of the facet; see also Section 5.3 below for a notion of facet.
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To illustrate the proof of (i) ⇒ (ii) in a simplified setting, consider now
a Lipschitz function ψ ∈ Lip(Rn) whose int {ψ = 0} is a simply connected
bounded open set U ⊂ Rn with Lipschitz boundary. Let us also for simplicity
assume that we can define ∇ψ ̸= 0 on ∂U Hn−1-a.e. as the limit of ∇ψ from
U

c. Suppose that there exists a vector field z ∈ L∞(Rn) ∩ C(Rn) with
div z ∈ L2(Rn) and z ∈ ∂σ(∇ψ) a.e. that is sufficiently regular so that the
following calculation can be justified and assume that div z = λ on U for
some λ. Then the divergence theorem yields

λLn(U) =
∫
U

div z dx =

∫
∂U

z · ν Hn−1.

We observe that ν = ∇ψ
|∇ψ| on ∂U+ and ν = − ∇ψ

|∇ψ| on ∂U−. Since z ∈ ∂σ(∇ψ),
we have z · ν = ±σ(ν) on ∂U±. We have∫

∂U

z · ν Hn−1. =

∫
∂U+

σ(ν) dHn−1 −
∫
∂U−

σ(ν) dHn−1 = SP (U).

In particular, λ = SP (U)
Ln(U)

. However, for any Lipschitz subset F of U we
have∫

F

div z dx =

∫
∂F

z · ν dHn−1 =

∫
∂F\∂U

z · ν dHn−1 +

∫
∂F∩∂U

z · ν dHn−1.

Using the estimate∫
∂F\∂U

z · ν dHn−1 ≤
∫
∂F\∂U

σ◦(z)σ(ν) dHn−1 ≤
∫
∂F\∂U

σ(ν) dHn−1,

we deduce that SP (F )
Ln(F )

≥ λ = SP (U)
Ln(U)

.
However, it seems that the proof of (ii) ⇒ (i) in Theorem 5.8 is available

only for n = 2. We expect it to be valid in arbitrary dimension.
Let us give a well-known example of a facet that breaks immediately in

the evolution.

2

2

1
2

1

A

B

Figure 9.

Example 5.9. Let n = 2 and σ(p) = ∥p∥1 = |p1| + |p2|. Consider the set
C = A ∪ B with A = [−1, 0] × [−1, 1] and B = [0, 1] × [1

2
, 1], see Figure 9,

and let ψ(x) = dist(x,C). It is well-known that C considered as a facet of
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ψ is not calibrable and breaks into two facets A and B moving at different
speeds. See [25] for the computation in the crystalline flow case and [130,
Sec. 5] for the explicit computation in the anisotropic total variation flow
case. [130] shows that the solution of the anisotropic total variation flow
(5.3) with initial data u0 = 1C is given as

u(x, t) = max(1− 3t, 0)1A +max(1− 4t, 0)1B.

Let us set U = intC. In terms of Theorem 5.8 note that SP (U) = P (U) = 8

and L2(U) = 5
2
, yielding a Cheeger ratio SP (U)/L2(U) = 16

5
= 3+ 1

5
, while

A has a Cheeger ratio SP (A)/L2(A) = 6
2
= 3, violating (5.8). U therefore

cannot be calibrable.

5.3. Curvature-like quantity. The characterization of the subdifferen-
tial of the anisotropic total variation and the localization of the canonical
restriction −∂0E motivates the following definition of the crystalline mean
curvature. To allow for a forced mean curvature flow, we need to include
the forcing into the definition. We follow the notation in [93].

Suppose that U ⊂ Rn is an open set and ψ ∈ Lip(U). If CH(ψ;U)

defined in (5.6) is nonempty we define the σ◦-(L2) divergence of ψ for any
f ∈ L2(U) as

Λf [ψ] := div zmin − f on {ψ = 0}

where zmin is a minimizer of ∥div z − f∥L2 (U) on CH(ψ;U), that is, div zmin

is the projection of f onto divCH(ψ;U). Since divCH(ψ;U) is closed con-
vex, the value div zmin is unique, but zmin might not be.

One might wonder whether the value of Λf [ψ] depends on the choice U ,
but thanks to the patching Lemma 5.4 that is not the case. For details see
[91, Prop. 4.10].
Remark 5.10. Note that since ∂σ is positively 0-homogeneous, Λf [tψ] does
not depend on t > 0, and in fact for any Lipschitz function θ : R → R with
θ(0) = 0 and θ′(s) > 0 for a.e. s we have Λf [θ ◦ ψ] = Λf [ψ]. Indeed, by the
chain rule for the Lipschitz functions ∇(θ ◦ ψ)(x) = θ′(ψ(x))∇ψ(x) a.e. if
we interpret the right-hand side as 0 when ∇ψ = 0. The 0-homogeneity of
∇σ implies that CH(ψ;U) = CH(θ ◦ ψ;U).

We also note the scaling invariance

Λf [ψ](x) = a−1Λaf(a·)[ψ(a·)](ax),

thanks to which we can always assume that U ⊂ (−1
2
, 1
2
)n.

In general, Λ0 is only BV and can be discontinuous as was shown in [27],
[28]. Finding the value of Λf [ψ] explicitly in dimensions n ≥ 2 is in general
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difficult. However, if {ψ = 0} has a sufficiently regular boundary and there
is a vector field in CH(ψ;U) with constant divergence on {ψ = 0}, then
Λf [ψ] can be found as the ratio of the signed anisotropic perimeter and the
area (volume) of the facet. Such facets are referred to as calibrable. Even
though this is well-known in the literature, we have not found a statement
that applies precisely to our setting and therefore we present it here with a
proof.

Lemma 5.11. Let U ⊂ Rn be bounded open set. Suppose that ψ ∈ Lip(U),
|ψ| > 0 on ∂U and there exists δ0 > 0 such that |∇ψ| > 0 a.e. on
{0 < |ψ| < δ0} and the sets {ψ < δ}, {−ψ < δ} are Lipschitz regular for
δ ∈ (0, δ0), and∫

∂{±ψ<δ}
σ(±ν) dHn−1 →

∫
∂{±ψ<0}

σ(±ν) dHn−1 as δ → 0,

where ν is the outer unit normal to the respective sets. If there exists zC ∈
CH(ψ;U), that satisfies div zC = C a.e. on {ψ = 0} for some constant
C ∈ R, then

Λ0[ψ] = C =

∫
∂{ψ≤0} σ(ν) dH

n−1 −
∫
∂{ψ≥0} σ(−ν) dH

n−1

|{ψ = 0}|
a. e. on {ψ = 0}.

(5.9)

If ψ is non-positive and σ = 1, then this number C is the Cheeger ratio
of the set {ψ = 0} if the boundary ∂{ψ ≥ 0} is Lipschitz. Note that we
invoke only approximability of surface energy by that of Lipschitz regular
set and do not assume Lipschitz regularity of ∂{ψ ≥ 0} itself.

Proof. Due to the existence of zC we know that Λ0[ψ] is well-defined. Let
us first prove that for all z ∈ CH(ψ;U) we have

∫
{ψ=0}

div z dx =

∫
∂{ψ≤0}

σ(ν) dHn−1 −
∫
∂{ψ≥0}

σ(−ν) dHn−1 = C|{ψ = 0}|.

(5.10)

The characterization of ∂σ in (5.4) yields z·∇ψ = σ(∇ψ) a.e. on {0 < |ψ| < δ0}.
For ε > 0 let ηε be the standard mollifier with radius ε and let zε := z ∗ ηε,
where we extend z by 0 outside U . We have

zε · ∇ψ → σ(∇ψ) a.e. in U ,
div zε → div z in L2(U),

as ε→ 0. The divergence theorem gives∫
{|ψ|<δ}

div zε dx =

∫
∂{|ψ|<δ}

zε · ν dHn−1.
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By the coarea formula, ν = ∇ψ
|∇ψ| Hn−1-a.e. on ∂{ψ < δ} and ν = − ∇ψ

|∇ψ|
Hn−1-a.e. on ∂{ψ > −δ} for a.e. δ ∈ (0, δ0). After sending ε → 0, the
dominated convergence theorem yields for a.e. δ ∈ (0, δ0)∫

{|ψ|<δ}
div z dx =

∫
∂{ψ<δ}

σ(ν) dHn−1 −
∫
∂{ψ>−δ}

σ(−ν) dHn−1.

Sending δ → 0 along a sequence leads to (5.10). We recover the second
equality in (5.10) by recalling that zC ∈ CH(ψ;U) satisfies div zC = C a.e.
on {ψ = 0}.

Let us write A = {ψ = 0}. For v = div zmin we have
∫
A
v dx =

∫
A
C dx

by (5.10) and therefore∫
A

v2 dx =

∫
A

C2 dx+

∫
A

(v − C)2 dx ≥
∫
A

C2 dx.(5.11)

By patching Corollary 5.5, the vector field

z̃ = zC1A + zmin1U\A

is also a Cahn-Hoffman vector field with

div z̃ = div zC1A + div zmin1U\A a.e. in U.

Therefore (5.11) implies that ∥div zmin∥L2(U) ≥ ∥div z̃∥L2(U) and we conclude
that div z̃ is minimizing. By uniqueness, div zmin = C a.e. on A. □

Let us conclude with a few examples of simple useful facets for which we
can compute Λ0 explicitly.
Example 5.12. Wulff facet.

For R > 0 consider ψ(x) := max(σ◦(x)−R, 0). We have {ψ = 0} = RWσ.
Take U to be a sufficiently large open ball containing RWσ and consider

the vector field

z(x) :=

{
x
R
, σ◦(x) ≤ R,
x

σ◦(x)
, otherwise.

Clearly z ∈ L∞(U) and div z ∈ L2(U) with

div z =

{
n
R
, σ◦(x) ≤ R,
n−1
σ◦(x)

, otherwise.

It is easy to check that z ∈ ∂σ(∇ψ) a.e. Therefore CH(ψ;U) ̸= ∅ and
Λ0[ψ] =

n
R
on {ψ = 0} by Lemma 5.11.

Example 5.13. Wulff facet with a “concentric” hole; Fig. 10. This example
is useful in calculating the crystalline curvature of the exterior facets of the
sponge-like solution in Figure 8.
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r∂Wσ

R∂Wσ

+ 0 +

Figure 10. Wulff facet with a hole in Example 5.13, with
sign of ψ indicated.

Suppose that σ◦ is even, i.e., σ◦(−x) = σ◦(x) for all x. Consider 0 < r <

R and the function

ψ(x) := max(r − σ◦(x), 0, σ◦(x)−R),

so that {ψ = 0} = RWσ \ int rWσ. Let us set

a :=
Rn−1rn−1(R + r)

Rn − rn
, b :=

Rn−1 + rn−1

Rn − rn

We claim that the vector field

z(x) :=


− x
σ◦(x)

, 0 < σ◦(x) ≤ r,(
− a(σ◦(x))−n + b

)
x, r < σ◦(x) < R,

x
σ◦(x)

, σ◦(x) ≥ R,

is a Cahn–Hoffman vector field for ψ on any U away from x = 0. To see that,
we consider g(s) := (−as−n + b)s. We note that g(r) = −1 and g(R) = 1,
and g is increasing on s > 0 which yields −1 < g(s) < 1 for r < s < R. By
the assumption that σ◦ is even, we have

σ◦(z(x)) = |g(σ◦(x))| ≤ 1 r < σ◦(x) < R.

This, by the characterization of the subdifferential, for example (5.4), im-
plies that z(x) ∈ ∂σ(0) = ∂σ(∇ψ(x)) for r < σ◦(x) < R. For other x the
inclusion z(x) ∈ ∂σ(∇ψ(x)) a.e. is obvious.

We also see that z is in fact locally Lipschitz continuous away from
x = 0. Therefore div z ∈ L2(U) for any U away from x = 0 and hence
z ∈ CH(ψ;U).

A direct computation using x ·∇σ◦(x) = σ◦(x) yields that almost every-
where

div z =


− n−1
σ◦(x)

, 0 < σ◦(x) ≤ r,

nb, r < σ◦(x) < R,
n−1
σ◦(x)

, σ◦(x) ≥ R.
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In particular, Λ0[ψ] = nb = nR
n−1+rn−1

Rn−rn by Lemma 5.11, matching the for-
mula (5.9).

Note that in the limit r → 0+, z converges to the vector field in Exam-
ple 5.12.
Example 5.14. Convex-concave facet; Fig. 10 with negative sign in the
hole.

Consider 0 < r < R and the function

ψ(x) := min(σ◦(x)− r,max(0, σ◦(x)−R)),

so that again {ψ = 0} = RWσ \ int rWσ, but this time ψ < 0 in rWσ. The
vector field

z(x) =
x

σ◦(x)

is a Cahn–Hoffman vector field for ψ on any U away from 0.
But we can be more precise as in Example 5.13. Let us set

a :=
Rn−1rn−1(R− r)

Rn − rn
, b :=

Rn−1 − rn−1

Rn − rn

and consider the vector field

z(x) :=


x

σ◦(x)
, 0 < σ◦(x) ≤ r,(

a(σ◦(x))−n + b
)
x, r < σ◦(x) < R,

x
σ◦(x)

, σ◦(x) ≥ R.

This is a locally Lipschitz continuous vector field away from x = 0. More-
over, div z = nb almost everywhere for r < σ◦(x) < R.

Let us check that it is a Cahn–Hoffman vector field. The inclusion z(x) ∈
∂σ(∇ψ(x)) is clear for σ◦(x) < r and R < σ◦(x). Since ψ(x) ≡ 0 for
r < σ◦(x) < R, we only need to check that σ◦(z) ≤ 1 by (5.4).

The function g(s) := (as−n + b)s is convex on s > 0 with minimum at
ŝ = ( b

(n−1)a
)−1/n with value g(ŝ) = n

n−1
bŝ > 0. Therefore as−n + b > 0 for

s > 0 and we have

σ◦(z(x)) = g(σ◦(x)) r < σ◦(x) < R.

Since g(r) = g(R) = 1, by convexity of g we conclude that σ◦(z(x)) ≤ 1

for all x ̸= 0. Therefore z is a Cahn–Hoffman vector field with constant
divergence on the facet {ψ = 0} and hence by Lemma 5.11 we have Λ0[ψ] =

nb.

5.4. Comparison and approximation. We start with the comparison
principle for the σ◦-(L2) divergence. Here sign s = −1, 0, 1 if s < 0, s = 0,
or s > 0 respectively.
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Theorem 5.15. Let σ be a convex, positively one-homogeneous function
on Rn that is positive away from 0. Let U be an open subset of Rn and let
ψi ∈ Lip(U) with {ψi = 0} compact subset of U , for i = 1, 2. Let fi ∈ L2(U)

for i = 1, 2. If CH(ψi;U) ̸= ∅ for i = 1, 2 and

signψ1 ≤ signψ2, f1 ≥ f2

then

Λf1 [ψ1] ≤ Λf2 [ψ2] a.e. on {ψ1 = 0} ∩ {ψ2 = 0}.

Before we proceed with the proof, we recall here a technical lemma proved
in [91, Lemma 4.13]. It is a variant of a result for continuous functions
established in [45, 60]; see also [83, Lemma 4.2.9].

Lemma 5.16. Suppose that ψ and φ are two nonnegative periodic Lipschitz
functions on Rn, such that {ψ = 0} ⊂ {φ = 0}. Then there exists a Lipschitz
continuous function θ : [0,∞) → [0,∞) such that θ(0) = 0, θ(s) > 0 for
s > 0 and θ′(s) > 0 for almost every s > 0 and we have

θ ◦ φ ≤ ψ on Rn.

Proof of Theorem 5.15. For simplicity, we assume f1 = f2 = 0. We can
assume that U is connected and by scaling that U ⊂ (−1

2
, 1
2
). By making U

smaller if necessary, we may assume that min∂U |ψi| > 0.
We can modify ψi away from {ψi = 0} to make it nonzero constant near

∂U and then extend it using this constant periodically so that ψi ∈ Lip(Tn)
and CH(ψi;Tn) ̸= ∅ without changing the value of Λ0[ψi] on {ψi = 0}. If
n = 1 we might have to do an even extension first if the sign differs on inf U

and supU .
By Lemma 5.16, we can also find θ1, θ2 ∈ Lip(R) with θi(0) = 0 and

θ′i > 0 a.e. so that θ1 ◦ ψ1 ≤ θ2 ◦ ψ2 everywhere. Since by Remark 5.10
we have CH(θi ◦ ψi;Tn) = CH(ψi;Tn), we can replace ψi with θi ◦ ψi and
assume that ψ1 ≤ ψ2 on Tn.

We then have Λ0[ψi] = −∂0E(ψi) on {ψi = 0} by the characterization of
the subdifferential in Corollary 5.2. Due to the comparison Proposition 5.7,
we have ψ1 ≤ ψ2 implies ψ1,a ≤ ψ2,a for the solutions of the resolvent
problem (5.7). On {ψ1 = 0} ∩ {ψ2 = 0} we have

ψ1,a − ψ1

a
≤ ψ2,a − ψ2

a
,

which using the convergence in Proposition 5.6 and sending a → 0 implies
−∂0E(ψ1) ≤ −∂0E(ψ2) a.e. on {ψ1 = 0} ∩ {ψ2 = 0}. □
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Abstract facets. The comparison principle for Λf [ψ] implies that the value
on {ψ = 0} depends only on f and signψ. We define the relation ∼ on
F = {ξ | ξ : Rn → R} the set of all real-valued function on Rn as

ξ1 ∼ ξ2 ⇔ sign ξ1 = sign ξ2.

This relation is an equivalence relation on F . We refer to its equivalence
classes [ξ] := {ψ | ψ ∼ ξ} ⊂ F as (abstract) facets. We write [ξ1] ⪯ [ξ2]

when sign ξ1 ≤ sign ξ2 and this relation defines a partial order on the set of
all facets F/ ∼:= {[ξ] | ξ ∈ F}.
Cahn–Hoffman facet. We say that a facet [ξ] is a σ◦-(L2) Cahn–Hoffman
facet if {ξ = 0} is compact and there are an open set U ⊂ Rn, {ξ = 0} ⊂ U

and a Lipschitz function ψ ∈ [ξ] such that CH(ψ;U) ̸= ∅. The facets in
Examples 5.12–5.14 are Cahn–Hoffman. It is not clear that this regularity
condition can be compared with the notion of σ0-regularity, or Lipschitz
σ0-regularity in the literature [24, 25, 27]

Proposition 5.17. For σ◦-(L2) Cahn–Hoffman facets [χ1] and [χ2] and
functions fi ∈ L2({χ1 = 0} ∪ {χ2 = 0}) we have

[χ1] ⪯ [χ2], f1 ≥ f2 a.e.

implies

Λf1 [χ1] ≤ Λf2 [χ2] a.e. on {χ1 = 0} ∩ {χ2 = 0}.

We will use σ◦-(L2) Cahn-Hoffman facets to build test functions for vis-
cosity solutions of the crystalline mean curvature flow and so we need to
make sure there are enough of them. In fact, any facet with bounded zero
set can be approximated by σ◦-(L2) Cahn-Hoffman facets monotonically ar-
bitrarily close in the Hausdorff distance. The following theorem was proven
in [81] for σ the Euclidean norm, and in [92] in full generality.

Theorem 5.18. Let χ be an n-dimensional facet with {χ = 0} bounded and
σ an anisotropy. Given ρ > 0 there exists a σ◦-(L2) Cahn-Hoffman facet χ̃
such that χ(x) ≤ χ̃(x) ≤ sup|x−y|≤ρ χ(y) for x ∈ Rn.

6. Approach by the theory of viscosity solutions

In this section we introduce a notion of viscosity solutions for non-
linear partial differential equations that include the very singular term
div∇σ(∇u)−f that represents an anisotropic mean curvature with forcing.

For the definition of the anisotropic mean curvature we use the quantity
Λf that was introduced in Section 5.3. It is important to note that if f
depends on x, the term div∇σ(∇u)− f must be carefully defined together
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and f cannot be added separately. Heuristically, the anisotropic mean cur-
vature flow prefers flat facets in the singular directions of σ even in the
presence of nonuniform forcing, and so the full quantity div∇σ(∇u) − f

should be constant on facets. If we considered the forcing f separately in
the definition of a viscosity solution, the comparison principle would still be
valid however we would have a problem with stability in the approximation
by regularized problems and ultimately we could not establish existence of
solutions. For a counterexample to existence see [93, Sec. 6].

6.1. Definition of viscosity solutions. If σ ∈ C2(Rn \{0}), it only has a
singularity at p = 0 and we have everything we need to define the viscosity
solution for (6.4). The following is the notion of the viscosity solution in-
troduced in [81, 80] assuming that F does not depend on x and t and there
is no forcing term.

Definition 6.1. An upper semicontinuous function u on Rn × (0,∞) is a
viscosity subsolution of

ut + F (∇u, div∇σ(∇u)) = 0(6.1)

if the following two conditions hold:
(i) (conventional test) If φ ∈ C2 near (x̂, t̂), ∇φ(x̂, t̂) ̸= 0 and u−φ has

a local maximum at (x̂, t̂), then

φt(x̂, t̂) + F (∇φ(x̂, t̂), div∇σ(∇φ)(x̂, t̂)) ≤ 0.(6.2)

(ii) (faceted test) If φ(x, t) = ψ(x)+g(t) with g ∈ C1(R) and ψ ∈ Lip(Rn)

so that [ψ] is a σ◦-(L2) Cahn-Hoffman facet, x̂ ∈ int {ψ = 0}, u −
φ(· − h) has a global maximum at (x̂, t̂) for all |h| small, then there
exists δ > 0 such that

g′(t̂) + F (0, ess inf
Bδ(x̂)

Λ0[ψ]) ≤ 0.(6.3)

A lower semi-continuous function is a viscosity supersolution if it sat-
isfies the above two conditions with maximum, ≤ and ess inf Λ replaced by
minimum, ≥ and ess supΛ, respectively.

Let us remark that in [81, 80] the facet test was restricted to test func-
tions where the facet [ψ] has a smooth boundary. However, this is not
essential as was observed in later papers.

As you can see, we need to reduce the class of test functions testing
at points where ∇u = 0 to be even able to define a reasonable value of
div∇σ(∇φ).



MOTION BY CRYSTALLINE-LIKE MEAN CURVATURE: A SURVEY 41

To include a forcing term f that depends on the x variable, we can follow
[93] to modify the above definition. We introduce

Λf [ξ](x) := lim
δ→0+

ess inf
Bδ(x)

Λf [ξ], Λf [ξ](x) := lim
δ→0+

ess sup
Bδ(x)

Λf [ξ],

on the interior of {ξ = 0}, which are well-defined and finite by the com-
parison principle with Wulff facets in Example 5.12 as long as f is locally
bounded. In fact, in this case Λf [ξ] is lower semi-continuous while Λf [ξ] is
upper semi-continuous.

Then we can define a viscosity subsolution of the PDE

ut + F (x, t,∇u, div∇σ(∇u)− f) = 0(6.4)

following the above definition, but replacing (6.2) with

φt(x̂, t̂) + F (x̂, t̂,∇φ(x̂, t̂), div∇σ(∇φ)(x̂, t̂)− f(x̂, t̂)) ≤ 0.

and (6.3) with

g′(t̂) + F (x̂, t̂, 0,Λf [ψ](x̂)) ≤ 0.(6.5)

This latter condition is slightly weaker than (6.3) used in [81, 80], and
allows for the proof of stability to handle a non-constant driving force f .

If the anisotropy σ has singularities other than at p = 0, the faceted test
has to be extended to those gradients of the solution. However, the singular
set of σ might be in general very complicated and it is not clear how to
define a viscosity solution for a general convex anisotropy σ (or a convex
function σ) except in one dimension.

Therefore we restrict our attention to crystalline anisotropies: an ani-
sotropy σ is called crystalline if it is a maximum of a finite number of
linear functions. In this case, the structure of singularities of σ is relatively
simple. The “kind” of singularity is determined by the dimension of the
subdifferential ∂σ(p), which corresponds to the expected dimension of the
facet in the direction p. We introduce the following orthogonal decomposi-
tion of the space Rn. For a fixed gradient p̂ ∈ Rn, define Z to be the linear
subspace of Rn parallel to the affine hull of ∂σ(p̂), see Figure 11. In other
words, Z is the smallest linear subspace such that ∂σ(p̂) ⊂ Z + ξ for some
ξ ∈ Rn. Set k := dim ∂σ(p̂) := dimZ. We have an orthogonal decomposi-
tion Rn = Z⊕Z⊥. We fix orthonormal bases of Z, Z⊥ which give two linear
isometries T : Rk → Z and T⊥ : Rn−k → Z⊥. This allows us to write any
x ∈ Rn uniquely as x = T x′ + T⊥x

′′ for some x′ ∈ Rk and x′′ ∈ Rn−k. For
k = 0, k = n we take x = x′′ and x = x′, respectively. If we denote the
adjoint of T as T ∗ and of T⊥ as T ∗

⊥ , we have x′ = T ∗x and x′′ = T ∗
⊥x.
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σ = 1

Z⊥ + p̂

Z

p̂

0

Figure 11. An illustration of the orthogonal decomposition
R2 = Z⊕Z⊥ at p̂ that lies on a “one-dimensional” singularity
of σ. The thick polygon is the boundary ∂Fσ = {σ = 1}, and
the solid rays from the origin indicate where dim ∂σ = 1.

Using the above decomposition, we can “slice” the anisotropy σ to extract
only the part that contains the singularity by introducing

σsl
p̂ (w) := lim

λ→0+

σ(p̂+ λT w)− σ(p̂)

λ
, w ∈ Rk.

This sliced function is again positively one-homogeneous and so we can
introduce a curvature-like quantity Λp̂,f [ψ] for (σsl

p̂ )
◦-(L2) Cahn–Hoffman

facets [ψ] on Rk and f ∈ Rk.
Let us give the definition of viscosity solution assuming that f ≡ 0 that

appeared in [92, Def. 4.7] with F independent of x and t and σ purely
crystalline.

Definition 6.2. An upper semicontinuous function u on Rn × (0,∞) is a
viscosity subsolution of

ut + F (∇u, div∇σ(∇u)) = 0(6.6)

if whenever p̂ ∈ Rn, x̂ ∈ Rn, t̂ ∈ (0, T ) and φ is a stratified test function
φ(x, t) = ψ(x′)+θ(x′′)+ p̂ ·x+g(t) with g ∈ C1(R), θ ∈ C1(Rn−k) satisfying
∇θ(x̂′′) = 0, and ψ ∈ Lip(Rk) so that [ψ] is a (σsl

p̂ )
◦-(L2) Cahn-Hoffman

facet, x̂′ ∈ int {ψ = 0}, and u− φ(· − h) has a global maximum at (x̂, t̂) for
all h = T h′ with |h′| small, then

g′(t̂) + F (p̂, ess inf
Bδ(x̂)

Λp̂,0[ψ]) ≤ 0.(6.7)

A lower semi-continuous function is a viscosity supersolution if it sat-
isfies the above two conditions with maximum, ≤ and ess inf replaced by
minimum, ≥ and ess sup, respectively.
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When a forcing f that depends on the x variable is involved, the condition
(6.7) has to be weakened as in (6.5), replacing ess inf Λp̂,0 by Λp̂,f̂ , f̂(w) =
f(x̂+T w), for the stability with respect to an approximation by regularized
problems to hold. See [93, Def. 2.7] for more details.

6.2. Comparison principle. In this section we review the comparison
principle for the PDE (6.4). There are a few different versions available
depending on the assumptions on F , σ and f .

Let us first suppose that f ≡ 0. The comparison theorem was first proved
in [81, 80] in the setting of an anisotropic total variation flow with smooth
anisotropy σ ∈ C2(Rn \ {0}) with σ2 strictly convex and F independent of
the x and t variables in the sense of Definition 6.1 on the torus Tn = Rn/Zn.
We follow [80, Th. 4.1].

Theorem 6.3. Let σ ∈ C2(Rn\{0} be an anisotropy and F ∈ C(Rn×R) be
nonincreasing in the second variable. Let u and v be respectively a bounded
viscosity subsolution and a viscosity supersolution of (6.6) in the sense of
Definition 6.1 on Tn × [0, T ]. If u ≤ v at t = 0 then u ≤ v on Tn × (0, T ).

When σ is crystalline while there is still no forcing, f ≡ 0, and F does not
depend on x and t, the following comparison principle for viscosity solutions
in the sense of Definition 6.2 was proved in [91, 92]. We follow the statement
in [92, Th. 1.4]. Instead of a torus, the solutions are assumed to be constant
outside of a ball.

Theorem 6.4. Let σ be a crystalline anisotropy and F ∈ C(Rn × R)
be nonincreasing in the second variable, F (0, 0) = 0. Suppose that u is a
viscosity subsolution and v is a viscosity supersolution of (6.6) on Rn×(0, T )

in the sense of Definition 6.2 and that there are constants R > 0, a ≤ b

such that u = a and v = b on (Rn \BR(0))× (0, T ). Then if u ≤ v at t = 0,
then u ≤ v on Rn × (0, T ).

If we consider a forcing term f that depends on x and t and solutions
of (6.4), an analogous comparison principle was proven in [93, Th. 3.1].
However, in this case at least one of u or v must be continuous, and either
it is also Lipschitz, or further regularity of F must be assumed. For details
see [93].

For simplicity of exposition, we present here the proof of a comparison
theorem in a simplified setting of a stationary problem. We consider the
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stationary equation with σ(p) = |p|, ∇σ(p) = p
|p| , that reads

u− div

(
∇u
|∇u|

)
= f,(6.8)

where f ∈ C(Rn) is given. This equation is of elliptic type. The definition
of viscosity solution is naturally modified to the following.

An upper semicontinuous function u is a viscosity subsolution of (6.8) if
• If φ ∈ C2 near x̂, ∇φ(x̂) ̸= 0 and u− φ has a local maximum at x̂,
then

u(x̂)− div

(
∇φ
|∇φ|

)
(x̂) ≤ f(x̂).

• If φ ∈ Lip so that [φ] is a σ◦-(L2) Cahn-Hoffman facet, x̂ ∈ int {φ = 0},
u− φ(· − h) has a global maximum at x̂ for all |h| small, then

u(x̂)− Λf [φ](x̂) ≤ 0.

A definition of a supersolution and a solution can be modified analogously.
Recall that

div

(
∇φ
|∇φ|

)
=

1

|∇φ|
tr

[(
I − ∇φ⊗∇φ

|∇φ|2

)
∇2φ

]
.

Remark 6.5. Note that the proof in this section applies with a small mod-
ification to general problems

F
(
u,∇u, div

(
∇u
|∇u|

))
= 0,

where F : R×Rn×R → R is a continuous function, satisfying monotonicity

F (r, p, ξ) ≤ F (r, p, η) for ξ ≥ η,

F (r, p, ξ) ≤ F (s, p, ξ)− µ(s− r) for r < s,

where µ > 0 is a constant. We write the proof for F (r, p, ξ) := r − ξ.

Theorem 6.6. Suppose that u and v are a viscosity subsolution and a
viscosity supersolution on Rn, respectively. Furthermore, assume that u and
v are bounded. If there exist constants R > 0 and a ≤ b such that u ≡ a and
v ≡ b on Rn \BR(0) then u ≤ v everywhere.

To show this theorem, we assume that the conclusion does not hold and

m0 := sup(u− v) = max(u− v) > 0.

To reach a contradiction, we double variables and for ζ ∈ Rn we consider
the function

Φζ(x, y) = u(x)− v(y)− |x− y − ζ|2

2ε
.
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We consider the maximum of Φζ as a function of ζ, that is,

ℓ(ζ) = sup
x,y

Φζ .

It is convenient to introduce the set of points of maxima

A(ζ) := argmaxΦζ := {(x, y) | Φζ(x, y) = ℓ(ζ)}

and the set of gradients of |x−y−ζ|2
2ε

at these points

B(ζ) :=
{
x− y − ζ

ε
| (x, y) ∈ A(ζ)

}
.

The parameter ε > 0 determines how much we penalize x ̸= y. We have
the following standard estimate on |x − y|; see [70]. We give a proof for
completeness.

Lemma 6.7. There is C > 0 such that for all ε > 0, |ζ| ≤ √
m0ε we have

|x− y| ≤ C
√
ε for all (x, y) ∈ A(ζ).(6.9)

Furthermore

ℓ(ζ) ≥ m0

2
.

Proof. First note that

ℓ(ζ) ≥ sup
x
(u(x)− v(x))− |ζ|2

2ε
≥ m0 −

m0

2
=
m0

2
.

Let M be a bound on u(x)− v(y). Then for (x, y) ∈ A(ζ) we obtain

M − |x− y − ζ|2

2ε
≥ u(x)− v(y)− |x− y − ζ|2

2ε
= ℓ(ζ) ≥ m0

2
> 0.

Hence

|x− y| ≤
√
2Mε+ |ζ| ≤

√
2Mε+

√
m0ε.

□

Let ωf be the modulus of continuity of f , that is, ω : [0,∞) → [0,∞),
ω(0) = 0, ω nondecreasing such that |f(x)− f(y)| ≤ ωf (|x− y|) for all x, y.
Let ε0 > 0 be such that ωf (C

√
ε0) <

m0

4
, where C is from (6.9). We consider

two possible cases:
1. There exist 0 < ε < ε0 and |ζ| ≤ √

m0ε such that B(ζ) ̸= {0}.
2. B(ζ) = {0} for all |ζ| ≤ √

m0ε, 0 < ε < ε0.

Case 1. We can fix ε, ζ and (x, y) ∈ A(ζ) such that 0 < ε < ε0,
|ζ| ≤ √

m0ε and p := x−y−ζ
ε

̸= 0. Note that this choice together with
Lemma 6.7 implies

|f(x)− f(y)| ≤ ωf (|x− y|) ≤ ωf (C
√
ε) ≤ ωf (C

√
ε0) ≤

m0

4
,(6.10)
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and

u(x)− v(y) ≥ u(x)− v(y)− |x− y − ζ|2

2ε
= ℓ(ζ) ≥ m0

2
.

Since the operator is smooth near∇u ̸= 0, we are well within the classical
viscosity solution framework for continuous operators. In particular, we can
use the now standard maximum principle for semicontinuous functions, see
the exposition in [47] or [83]. Therefore there exist symmetric matrices X,Y
with X ≤ Y , sequences xn → x, yn → y and sequences of C2 functions φn,
ψn such that u−φn has a local maximum at xn, v−ψn has a local minimum
at yn, and

(xn, u(xn),∇φn(xn),∇2φn(xn)) → (x, u(x), p,X),

(yn, v(yn),∇ψn(yn),∇2ψn(yn)) → (y, u(y), p, Y ).

From the definition of viscosity solution we deduce

u− 1

|∇φn|
tr

[(
I − ∇φn ⊗∇φn

|∇φn|2

)
∇2φn

]
≤ f at xn

v − 1

|∇ψn|
tr

[(
I − ∇ψn ⊗∇ψn

|∇ψn|2

)
∇2ψn

]
≥ f at yn.

In the limit n→ ∞, continuity and (6.10) yield

u(x)− 1

|p|
tr

[(
I − p⊗ p

|p|2

)
X

]
≤ f(x)

≤ f(y) +
m0

4
≤ v(y)− 1

|p|
tr

[(
I − p⊗ p

|p|2

)
Y

]
+
m0

4
.

On the other hand, u(x) ≥ v(y) + m0

2
and X ≤ Y imply

v(y)− 1

|p|
tr

[(
I − p⊗ p

|p|2

)
Y

]
+
m0

4
< u(x)− 1

|p|
tr

[(
I − p⊗ p

|p|2

)
X

]
.

We reach a contradiction.

Case 2. Since we cannot find any maximum of Φζ at which the “gra-
dient” of u nor v is nonzero, we need to construct admissible faceted test
functions for the faceted test in the definition of viscosity solution.

The extra parameter |ζ| provides a little bit of space to construct these
faceted test functions. The following “constancy” lemma was proven in a
more general settings in [70, Lemma 7.5]. We include the proof in our simple
setting for completeness.

Lemma 6.8 (Constancy). Let G ⊂ Rn be a closed ball. If for all ζ ∈ G

there exists (x, y) ∈ A(ζ) such that x − y − ζ = 0 then ℓ(ζ) is constant on
G.
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Proof. Take ζ, µ ∈ G and (x, y) ∈ A(ζ) with x − y − ζ = 0. In particular,
ℓ(ζ) = u(x)− v(y). From the definition of ℓ,

ℓ(µ) ≥ u(x)− v(y)− |x− y − µ|2

2ε
= ℓ(ζ)− |x− y − µ|2

2ε
.

Since x− y − ζ = 0, we have

|x− y − µ|2 = |x− y − ζ + ζ − µ|2 = |ζ − µ|2,

yielding

ℓ(µ)− ℓ(ζ) ≥ −|ζ − µ|2

2ε
,

and, by symmetry,

|ℓ(µ)− ℓ(ζ)| ≤ |ζ − µ|2

2ε
for all ζ, µ ∈ G.

We conclude that ℓ(ζ) = ℓ(µ) for all ζ, µ ∈ G. □

Since in Case 2 we have B(ζ) = {0} for all ζ ∈ G := B√
m0ε, we can

choose (x̂, ŷ) ∈ A(0) with x̂− ŷ = 0 and the above lemma yields

u(x)− v(y) ≤ ℓ(x− y) = ℓ(0) = u(x̂)− v(x̂) for |x− y| ≤
√
m0ε.

(6.11)

Let us set λ =
√
m0ε. Defining

ηu = sign(u− u(x̂)) ηv = sign(v − v(x̂)),

the inequality (6.11) yields

sup
Bλ/2(x)

ηu ≤ inf
Bλ/2(x)

ηv for all x.

By the density result Theorem 5.18, there are admissible facets χu and
χv satisfying

sup
Bλ/4(x)

ηu ≤ χu(x) ≤ sup
Bλ/2(x)

ηu ≤ inf
Bλ/2(x)

ηv(x) ≤ χv ≤ inf
Bλ/4(x)

ηv.

Clearly χu = χv = 0 on Bλ/4(x̂). By the comparison principle for the cur-
vature operator, Proposition 5.17,

ess inf
Bλ/4(x̂)

Λf [χu] ≤ ess sup
Bλ/4(x̂)

Λf [χv],

which implies

Λf [χu](x̂) ≤ Λf [χv](x̂).(6.12)

Let us choose an admissible support function φu ∈ Lip ∩ [χu]. Since u is
bounded and upper semicontinuous, we can multiply the positive part of φu
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by a large positive constant, and the negative part of φu by a small positive
constant, if necessary, to guarantee that

u ≤ φu(· − h) + u(x̂) for |h| < λ
8
.

Note that the equality is attained at x̂ as φu = 0 on Bλ/4(x̂). Therefore φu
is an admissible faceted test function for the viscosity solution test and

u(x̂)− Λf [φu](x̂) ≤ 0.

Similarly, we can find φv ∈ Lip ∩ [χv] with

v(x̂)− Λf [φv](x̂) ≥ 0.

Thus, recalling (6.12), we have

u(x̂) ≤ Λf [φu](x̂) ≤ Λf [φv] ≤ v(x̂) ≤ u(x̂)−m0 < u(x̂),

a contradiction. This finishes the proof of Theorem 6.6.

6.3. Existence of solutions. The existence of viscosity solutions is usually
established using Perron’s method: the largest subsolution of the problem is
automatically a solution. However, the operation of taking a supremum of
a class of viscosity solutions requires a stability property whose validity is
unclear for the viscosity solutions considered here in dimensions n ≥ 2. In
one dimension, Perron’s method was used to construct viscosity solutions
for (6.4) in [79]. This however requires a careful treatment of the nonlocal
anisotropic curvature.

The main issue with the stability required for the supremum of subso-
lutions to be a subsolution is the discontinuity of the value of Λf [ψ] when
a facet bends or breaks. In the standard proof of this stability, it is crucial
to localize by replacing a test function φ by another so that u − φ can be
assumed to have a strict local maximum (or minimum). Due to the discon-
tinuity of our operator Λf with respect to such bending, this tool is not
available.

The approach that was taken in [81, 91] is via stability with respect to
approximation by problems with regularized σ. In particular, we consider
two ways of approximating a crystalline σ:

(a) σm ∈ C2(Rn) with a−1
m I ≤ ∇2σm ≤ amI for some am > 0, σm is a

decreasing sequence with σm → σ locally uniformly.
(b) σm are anisotropies with σm ∈ C2(Rn \ {0}) such that σ2

m is strictly
convex and σm → σ locally uniformly.
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However, for various reasons related to the regularity of the solutions of
the approximating problems, we need to assume that F does not depend
on the x variable, and consider solutions of the regularized problems

ut + F (t, div∇σm(∇u)− f) = 0.(6.13)

Since σm are C2 and convex, the classical theory of viscosity solutions ap-
plies, including the unique existence of solutions for given bounded contin-
uous initial data.

We have the following stability result when approximating using (a), see
[93, Th. 4.1] or [91, Th. 8.1], which resembles the usual stability of viscosity
solutions in the classical theory. Let lim sup∗ (resp. lim inf∗) denote the
relaxed upper limit (lower) limit defined by

(lim sup∗ um)(x, t) = lim sup
m→∞

{
uk(y, s)

∣∣ |x− y|+ |t− s|+ 1/k < 1/m
}

(lim inf∗ um)(x, t) = − (lim sup(−um)) (x, t)

for a sequence {um} of functions on Rn × [0,∞).

Theorem 6.9. Let σ be a crystalline anisotropy and assume that F does
not depend on the x variable and f ∈ C(Rn×R) is Lipschitz continuous in
space, uniformly in time. If {um} is a locally bounded sequence of viscosity
solutions of (6.13) with σm as in (a) above, then lim sup∗

m→∞ um is a viscosity
subsolution of (6.4), and lim inf∗m→∞ um is a viscosity supersolution of (6.4).

The main idea of the proof of Theorem 6.9 is inspired by the perturbed
test function method due to Evans [58]. Let us for simplicity assume that
f ≡ 0. The crystalline mean curvature, or specifically the operator Λ0[ψ] is
nonlocal on the facets of ψ. In contrast, the elliptic operators div∇σm(∇ψ)
are local and they are in fact zero on the facets of ψ. To recover the nonlocal
information in the limit m → ∞, we perturb the test function ψ using
a sequence ψm of uniformly converging C2 functions ψm → ψ, such that
div∇σm(∇ψm) approximates the value of Λ0[ψ] in a suitable sense at the
contact point.

Such approximation is available via the resolvent problem for the regu-
larized energy Em, with σ replaced by σm in (5.2). For a given a > 0 and
ψ ∈ L2(Tn), there exists a unique solution ψa,m ∈ L2(Tn) of

ψa,m + a∂Em(ψa,m) ∋ ψ.

If ψ ∈ Lip(Tn), then ψa,m is Lipschitz uniformly in a and m by the compar-
ison principle like Proposition 5.7 and translation invariance of the opera-
tor, and in fact it is C2 by the elliptic regularity theory. Since Em Mosco-
converges to E (see (1.7) for the definition), we have a convergence of the
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resolvent solutions ψa,m → ψa in L2(Tn), see [12], and hence uniformly
by the uniform Lipschitz continuity. Using Proposition 5.6, we can deduce
that ψa,m uniformly approximate ψ as a → 0 and then m → ∞. Functions
ψa,m are used to build test functions for the regularized problem, and allow
us to deduce that lim sup∗

m→∞ um is a viscosity subsolution of (6.4), and
lim inf∗m→∞ um is a viscosity supersolution of (6.4).

Approximation using (b) is relevant when considering the crystalline
mean curvature flow as a limit of a smooth anisotropic mean curvature
flow. To prove the stability for (b), we use the stability Theorem 6.9 to
approximate each σm by a sequence of C2 functions σm,δ and therefore we
need to know that a given solution um can be approximated by a sequence
of solutions um,δ with this anisotropy. This is known for example when um
have continuous bounded initial data. We have the following stability result,
[93, Th. 4.4].

Theorem 6.10. Let σ, F and f be as in Theorem 6.9. Let T > 0 and let um
be a locally bounded sequence of viscosity solutions of (6.13) on Rn× (0, T )

with σm as in (b) with initial data um(·, 0) = u0,m, where u0,m ∈ C(Rn) are
uniformly bounded. Then lim sup∗

m→∞ um is a viscosity subsolution of (6.4),
and lim inf∗m→∞ um is a viscosity supersolution of (6.4).

Now with the stability with respect to approximation by the regularized
problems established, and the comparison principle discussed in Section 6.2,
we can follow the standard idea to show existence of (6.4) for given initial
data when the operator F does not depend on the x variable. For given
bounded uniformly continuous initial data, we take um solutions of the reg-
ularized problem with initial data u0 from Theorem 6.10. By using barriers
at t = 0, we can show that the limits satisfy

lim inf∗
m→∞

um
∣∣
t=0

≥ u0, lim sup∗

m→∞
um
∣∣
t=0

≤ u0.

From the comparison principle for (6.4) we immediately have

lim sup∗

m→∞
um ≤ lim inf∗

m→∞
um.

This implies that both limits are equal, the convergence is locally uniform,
and the limit is a viscosity solution of (6.4).

If the forcing f depends on x, there is an additional difficulty that the
comparison principle for semi-continuous solutions is not available, see [93,
Sec. 3]. The comparison principle established in [93] requires that at least
one of the solutions is continuous. Fortunately, for operators F that come
from the level set formulation of geometric motions one can prove uniform
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Lipschitz bounds in space and uniform Hölder bounds in time on the approx-
imating sequence um for Lipschitz initial data u0, see [93, Sec. 5]. Therefore
the convergence um is locally uniform for subsequences and the limits are
a priori continuous. In particular, the restricted comparison principle ap-
plies and existence of solutions can be established. We have the following
existence theorem, [93, Th. 1.1].

Theorem 6.11. Assume that g ∈ C(Sn−1 × R) is Lipschitz continuous in
the second variable uniformly in the first variable and non-decreasing in the
second variable, σ is a crystalline anisotropy and f ∈ C(Rn×R) is Lipschitz
continuous in space uniformly in time. Then there is a unique global-in-time
level set flow to

V = g(ν, κσ + f(x, t))

when the initial hypersurface is compact.

Remark 6.12. If f is constant, then the global Lipschitz continuity of F
is unnecessary [91], [92]. In particular, it applies to (2.1). In the case n = 2,
it applies to a general anisotropy under a slightly different definition of a
solution [73]. Note that the level set equation for V = κσ is

ut = |∇u| div∇σ(∇u)

so that each level set of u moves by V = κσ. The level set flow is a level set
of a viscosity solution u. Its uniqueness (up to fattening) is guaranteed by
the comparison principle and an invariance under a change of the depen-
dent variable u (representing its level sets) together with Lemma 5.16. This
procedure is standard for a level set flow; see e.g. [83]. The terminology of
the level set flow here is different from that in Section 7.

6.4. Convergence of various approximations. It is well-known that
the solution of the mean curvature flow equation is approximated by that
of the Allen-Cahn equation; see [131], [34], [44], [59]. Anisotropic version
of the Allen-Cahn equation is introduced by [129], which is an L2-gradient
flow of

Fε(v) =

∫
Rn

{
1

2
σ(∇v)2 + 1

ε2
(W (v)− ελF (v))

}
dx.

Here, W (v) is a double-well potential typically W (v) = (v2 − 1)2/2 and
F (v) = Cv with constant C for simplicity. The parameter λ > 0 should be
chosen in a suitable way. In an explicit form, the anisotropic Allen-Cahn
equation reads

β(∇v)vt − div (σ(∇v)ζ(∇v)) + 1

ε2
(W ′(v)− ελC) = 0(6.14)



52 Y. GIGA AND N. POŽÁR

with some kinetic coefficient β > 0 which is positively one-homogeneous;
here ζ(p) = ∇pσ(p). If one considers an L2 gradient flow of F , the equation
(6.14) with β ≡ 1 is obtained. The extra multiplier comes from the mod-
elling to include anisotropy of mobility. For a given closed interface Γ0, we
consider a function vε0 which converges in a suitable way to −1 in an open
set surrounded by Γ0 and to 1 outside the closure of the open set. It is ex-
pected that the solution of the anisotropic Allen-Cahn equation with initial
data vε0 converges to 1 inside an open set surrounded by Γt and −1 outside
Γt and this open set, where Γt is a (generalized) solution to the interface
equation

β(n)V = σ(n)(κσ − C).

(Here λ should be taken as λ = 2/3 if W (v) = (v2 − 1)2/2.) Formal as-
ymptotic analysis is carried out by [129], [166] and [29], which derives the
interface equation. For smooth anisotropy with β ≡ 1, the convergence is
established by [54] when the solution of the interface equation is smooth,
here W is taken as double-obstacle type, for example, W (v) = 1 − v2 in
|v| ≤ 1 and W (v) = ∞ for |v| > 1. This result is extended when Γt is a gen-
eralized solution (a level-set solution allowing fattening). In [90] it is shown
that such convergence is uniform in σ provided that the Frank diagram Fσ

is bounded by a ball both from inside and outside. It does not depend on
regularity of σ.

For crystalline σ under β ≡ 1, the convergence with some rate is estab-
lished for planar crystalline flow [23]. It is somewhat extended to higher
dimension for a special class of solutions of the interface equation; its ex-
istence is not clear [24]. Several explicit examples of convergence are given
by [161]. One of the reasons why β ≡ 1 is assumed is that the notion of so-
lutions for the Allen-Cahn equation is unclear. Maybe a viscosity approach
will resolve this issue.

Since our solution for the interface equation for crystalline σ is obtained
as a limit of smoother problems as in the previous subsection, combining
uniform convergence with respect to σ we are able to prove the convergence
as ε → 0 by approximating β and σ by smooth function; see [90, Theorem
2.4]. Note that in two dimensional case, the stability was proved in [73].

Another typical way to approximate a solution is what is called Cham-
bolle’s scheme introduced by [39]. We here give its anisotropic version [38],
[43]. We consider

V =M(ν)κσ.
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We set the support function of the polar of 1/M (Frank diagram of M) by
M0, i.e.,

M0(x) := sup
{
x · p

∣∣ |p| ≤ 1/M (p/|p|)
}
.

Here M is assumed to be positive on Sn−1. The function M0 is convex, pos-
itively 1-homogeneous in Rn and it is positive outside the origin. However,
it may not satisfy the symmetry M(x) = M(−x) so that distM0(x, y) =

M0(x− y) is a non-symmetric distance. For a given bounded set E0 in Rn,
let dM0(x,E0) denote its anisotropic signed distance, i.e.,

dM0(x,E0) := distM0(x,E0)− distM0(x,Ec
0), x ∈ Rn,

where
distM0(x,E0) := inf

y∈E0

distM0(x, y).

We next consider an energy functional of the form

Jh(v, E0) =

∫
Ω

{
σ(∇v) + 1

2h
|v − dM0|2

}
dx

for a domain Ω containing E0 with a small parameter h > 0. This value is
finite in L2(Ω) ∩ BV (Ω) so we regard Jh as a lower semicontinuous convex
functional on L2(Ω) by interpreting its value equal to ∞ on L2(Ω)\BV (Ω).
It admits a unique minimizer w = argmin Jh. We introduce the operator Th
as

Th(E0) = {x ∈ Rn | w(x) ≤ 0} .
An approximate flow is defined by applying the above step iteratively as

Eh(t) = T
⌊t/h⌋
h (E0),(6.15)

where ⌊s⌋ denotes its integer part of s > 0. We expect that Eh converges
to the level-set solution of V = M(ν)κσ as h → 0, for example, in the
Hausdorff distance sense uniformly in t ∈ [0, T ] with finite T . Let us give a
very heuristic argument. We consider the isotropic case V = κ so thatM = 1

and σ(p) = |p|. Then the minimizer w satisfies the resolvent equation
w − d

h
− div

∇w
|∇w|

= 0,

where d denotes the Euclidean signed distance of E0. This is the implicit
Euler scheme for the total variation flow. The signed distance function sat-
isfies |∇d| = 1 on the interface Γt so V ≈ w−d

h
and it is expected that the

zero level of w approximates the solution Γt.
The isotropic case of this scheme was first introduced in [39], which gives

a monotone way to realize the time discrete scheme proposed by [2]; see also
[128]. In [39] L1 convergence: Eh(t) → E(t) on [0, T ], where E(t) is the level
set solution of V = κ (starting from a closed set E0 with E0 = intE0) was
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established provided that no fattening phenomena occur. Its anisotropic
extension is done by [38] in the case when E0 is convex and compact under
the assumption that σ/M is constant on Sn−1; see [43] for non-convex initial
data; here anisotropy is assumed to be smooth. In [18] for a non-smooth σ
including crystalline, a unique solution for V = σκσ is constructed when
E0 is convex and compact by defining a solution by the distance function.
For smooth anisotropy for a bounded nonconvex initial data, the Hausdorff
convergence is proved in [57], where they prove locally uniform convergence
of an associated function

uh(x, t) =
(
S
[t/h]
h u0

)
(x)

with

(Shu0)(x) = sup
{
µ ∈ R

∣∣ x ∈ Th ({x ∈ Rn | u0(x) ≥ µ})
}
.

Although it is remarked in [57] and [43], the case when σ and M are un-
related is not discussed in detail. In [106] a proof based on the distance
function is given for several choices of σ and M and general initial data not
necessarily compact mostly for smooth case. However, it is also shown in
[106] that if the solution of crystalline anisotropy has a stability property we
are able to prove the convergence of Chambolle’s scheme by approximating
M and σ. Since at that time, the stability was only available in two dimen-
sional case [73], convergence result in [106] looks limited but it applies to
general dimension at least for purely crystalline anisotropy since the sta-
bility holds for general dimension as discussed in the previous subsection.
The reason why M and σ are approximated by a smoother one in Cham-
bolle’s scheme in [106] seems to avoid analysis for the resolvent equation for
non-smooth M and σ, so it seems that it is not substantial.

In the next section we discuss a notion of solutions based on distance
functions to the evolving surface that can be showed to be the limits of the
discrete evolutions (6.15) given by Chambolle’s scheme, see Theorem 7.7.

7. Approach by distance functions

In this section we discuss an alternative approach to defining a notion
of solutions of the crystalline mean curvature flow that appeared in a series
of papers by Chambolle, Morini, Novaga and Ponsiglione [42, 40, 41]. The
main idea is to require that the distance function to an evolving set is a
sub/supersolution of a related partial differential equation in the sense of
distributions.
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This approach applies to a form of the crystalline mean curvature flow
that is linear in the curvature term:

V =M(ν)(κσ − f).(7.1)

However, both σ and M can be arbitrary anisotropies, not necessarily crys-
talline. For simplicity, we will assume that both σ and M are even, that
is, σ(p) = σ(−p) and M(p) = M(−p) for all p ∈ Rn. This restriction
however does not appear to be essential. Moreover, the initial data E0

can be an unbounded closed set, and the forcing term needs to be only
f ∈ L∞(Rn × (0, T )) with f(·, t) Lipschitz uniformly in t.

The distance function must be adapted to the mobility M . As in [40] for
any norm η we denote

distη(x,E) := inf
y∈E

η(x− y), E ⊂ Rn.

Note that distη(x, ∅) = +∞.
Let En ⊂ Rn be a sequence of closed sets and E ⊂ Rn a closed set.

We say that En converges to E in Kuratowski sense, and write En
K→ E,

if distη(·, En) → distη(·, E) locally uniformly in Rn for some norm η. It is
easy to see that if this converges for one norm, it converges for all norms.

The following definition appeared in [40].

Definition 7.1. Let E0 ⊆ Rn be a closed set. Let E be a closed set in
Rn × [0,+∞) and for each t ≥ 0 define E(t) := {x ∈ Rn : (x, t) ∈ E}. We
say that E is a superflow of (7.1) with initial datum E0 if:

(a) E(0) ⊆ E0,
(b) E(s) K→ E(t) as s↗ t for all t > 0,
(c) If E(t) = ∅ for some t ≥ 0, then E(s) = ∅ for all s > t.
(d) Set T ∗ := inf {t > 0 : E(s) = ∅ for s ≥ t}, and

d(x, t) := distM
◦
(x,E(t)) for all (x, t) ∈ Rn × (0, T ∗) \ E.

Then there exists K > 0 such that the inequality

dt ≥ div z + f −Kd(7.2)

holds in the distributional sense in Rn × (0, T ∗) \ E for a suitable
z ∈ L∞(Rn × (0, T ∗)) such that z ∈ ∂σ(∇d) a.e., div z is a Radon
measure in Rn × (0, T ∗) \ E, and

(div z)+ ∈ L∞({(x, t) ∈ Rn × (0, T ∗) : d(x, t) ≥ δ}) for every δ ∈ (0, 1).

An open set A ⊂ Rn × [0,+∞) is a subflow of (7.1) with initial datum
E0 if Ac is a superflow of (7.1) with f replaced by −f and with initial datum
(intE◦)c.
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A closed set E ⊂ Rn × [0,+∞) is a solution of (7.1) with initial datum
E0 if it is a superflow and if intE is a subflow, both with initial datum E0.

The condition (b) is meant to prevent a possibility that E expands dis-
continuously, for example a bubble closing up, which cannot be ruled out
by (7.2).

Note that K is related to the Lipschitz constant of f with respect to the
distance induced byM . In fact, in the smooth case σ,M ,M◦ ∈ C2(Rn\{0}),
f continuous, then E is a superflow in the sense of Definition 7.1 if and only
if −1E is a viscosity supersolution of the level set equation

ut =M(∇u)(div∇σ(∇u) + f),

in Rn× (0, T ∗]; see [40, Lemma 2.6]. For viscosity supersolution −1E we can
take K = Lip(f) in (7.2).

We cannot in general expect uniqueness of a solution in the sense of
Definition 7.1 since there may occur fattening phenomena. The comparison
principle between superflows and subflows requires a positive distance be-
tween initial data and therefore by itself does not provide uniqueness. The
following theorem appeared in [40].

Theorem 7.2 (c.f. [40, Theorem 2.7]). Let E be a superflow with initial
datum E0 and F be a subflow with initial datum F 0 in the sense of Defini-
tion 7.1. If distM◦

(E0, (F 0)c) =: δ > 0, then

distM
◦
(E(t), F (t)c) ≥ δe−Kt for all t ≥ 0,

where K > 0 is the constant in (7.2) for both E and F .

To obtain uniqueness, [40] introduce the associated level-set flow.

Definition 7.3. Let u0 be a uniformly continuous function on Rn. We say
that a lower semicontinuous function u : Rn × [0,∞) → R is a level-set
supersolution corresponding to (7.1) with initial datum u0 if u(·, 0) ≥ u0

and if for a.e. λ ∈ R the closed sublevel set {u ≤ λ} is a superflow of (7.1)
in the sense of Definition 7.1 with initial datum {u0 ≤ λ}.

Similarly, an upper semicontinuous function u : Rn × [0,∞) → R is a
level-set subsolution corresponding to (7.1) with initial datum u0 if −u is
a level-set supersolution in the previous sense, with initial datum −u0 and
with f replaced by −f .

A continuous function u : Rn × [0,∞) → R is a level-set solution corre-
sponding to (7.1) with initial datum u0 if it is both a level-set supersolution
and level-set subsolution with the same initial datum.
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Our terminology here is different from that in [83, Chapter 5]. A super-
flow here is called a set-theoretic supersolution in [83]. A level set superso-
lution in [83] is a superflow given by sublevel set of a continuous level-set
supersolution.

The following comparison theorem was proven in [40].

Theorem 7.4 (c.f. [40, Theorem 2.5]). Let u0, v0 be uniformly continuous
functions on Rn and let u, v be respectively a level-set subsolution with initial
datum u0 and a level-set supersolution with initial datum v0, in the sense of
Definition 7.3. If u0 ≤ v0 then u ≤ v.

The main idea using Theorem 7.2 to prove Theorem 7.4 is that due to the
uniform continuity, the superflow {u ≥ λ1} and the superflow {v ≤ λ2} for
λ1 > λ2 are initially separated by a positive distance so that Theorem 7.2
applies.

It remains to establish the existence of the level-set solutions. In the
smooth case, the notion in the sense of Definition 7.3 is equivalent to the
standard notion of viscosity solutions. In general, an approximation by a
sequence of smooth anisotropies Mn, σn and a stability result established
in [41, Theorem 2.8] allows to construct a level-set solution as the limit of
viscosity solutions. However, the stability result requires that the approxi-
mating sequenceMn is uniformly σn regular, that is, it is required that there
exists ε0 > 0 such that

Mn =M0,n + ε0σn

for all n for some convex functions M0,n. Or equivalently, the Wulff shapes
WMn is must satisfy interior Wσ condition uniformly in n. Intuitively, if M
is σ regular the level sets of d := distM

◦
(·, E) have σ-curvature bounded by

C/d for some constant C > 0.
In particular, this stability result is only able to construct level-set solu-

tions in the sense of Definition 7.3 if M is σ-regular. Therefore the authors
of [41] propose a definition of a solution via approximation.

Definition 7.5 (c.f. [41, Definition 3.6]). A continuous function u : Rn ×
[0,∞) → R is a solution via approximation to the level set flow correspond-
ing to (7.1) with initial datum u0 if there exists a sequence {Mn} of σ-regular
mobilities such that Mn →M and, denoting un the unique level-set solution
of (7.1) with mobility Mn and initial datum u0, we have un → u locally
uniformly in Rn × [0,∞).

Such a solution always exists and is independent of the approximating
sequence {Mn}.
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Theorem 7.6 (c.f. [41, Theorem 3.7]). Let u0 be a uniformly continuous
function on Rn. There exists a unique solution u in the sense of Defini-
tion 7.5 with initial datum u0.

Alternatively, the level-set flow solutions in Definition 7.3 and the so-
lutions via approximation Definition 7.5 can be constructed using a mini-
mizing movement scheme; see [40] and the discussion in Section 6.4. To be
more precise, for given initial data u0 one can define the level set discrete
evolution uh : Rn × R → R as

uh(x, t) := inf {λ ∈ R : x ∈ Eλ,h(t)},

where Eλ,h(t) is the discrete evolution given by Chambolle’s scheme in (6.15)
with E0 := {u0 ≤ λ}. The following result was proved in [40, Th. 5.7].

Theorem 7.7. Let u0 be a uniformly continuous function on Rn. The unique
solution of (7.1) in Theorem 7.6 is the locally uniform limit in Rn× [0,+∞)

as h→ 0+ of the level set minimizing movements uh.

Here are the types of solutions that are currently available if velocity
law is linear in curvature, i.e., of the form (7.1), and the initial data u0 is
constant outside of a bounded ball:

• σ smooth, M arbitrary: classical viscosity solutions [45]
• σ purely crystalline, M arbitrary: crystalline viscosity solutions [93]
• σ arbitrary, M is σ-regular: level-set solutions [40, 41]
• M , σ arbitrary: solutions via approximation [40, 41]

If the velocity law is not linear in curvature, only the viscosity solutions
are currently available. On the other hand, the latter two notions apply also
to general uniformly continuous initial data.

If the law is linear in the curvature, σ is purely crystalline and u0 is
constant outside of a large ball, so that the notions of crystalline viscosity
solutions and solutions via approximation both apply, they also give the
same solutions. This can be seen by applying stability properties under the
approximation of σ by smooth σn.

Notion of solutions σ M
classical viscosity solutions [45] C2 any+
crystalline viscosity solutions [93] purely crystalline any+
level-set solutions [40, 41] any σ-regular
solutions via approximation [40, 41] any any

any+: allows any nonnegative function, not just anisotropies.
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8. Some numerics

The study of the crystalline mean curvature flow using numerical meth-
ods goes back to the seminal work of J. E. Taylor, who developed the crys-
talline algorithm based on the polygonal flow in Section 3 in both two and
three dimensions [157, 159], including spiral growth in two dimensions and
observation of possible facet breaking in three dimensions. Examples of facet
breaking were further numerically investigated in [138].

In higher dimension, the crystalline algorithm is limited to evolutions in
which topological changes or facet breaking do not occur, or the result of
facet breaking can be computed and produces facets with somewhat simple
topology. In a more general situation, the level set method is popular to
track the evolution past singularities. However, the level set equation for
the crystalline mean curvature is rather singular and so its direct use is
limited.

An anisotropic version of the Allen–Cahn equation was used to approx-
imate the crystalline mean curvature flow in three dimensions in [147]. In
particular, an example of facet bending was demonstrated.

A. Chambolle reformulated the minimizing movements scheme of [2]
and [128] for anisotropic mean curvature flow in terms of the signed dis-
tance function as the level set function and proposed a numerical method
to solve the resulting minimization problem in [39] (see Section 6.4 for more
details). In [140] it was observed that the minimization problem in Cham-
bolle’s scheme can be solved efficiently using the split-Bregman method for
the total variation minimization [97], and presented computational results
for two dimensional crystalline mean curvature flow. However, the method
easily generalizes to any dimension; see [148] for computational results for
three dimensional evolutions.

It is also possible to regularize the crystalline anisotropy and consider
the almost-crystalline but smooth anisotropic mean curvature flow, with
many numerical methods available. One way to approximate the smooth
anisotropic mean curvature flow numerically is using the Allen–Cahn equa-
tion (6.14) with double obstacle potentials (see §6.4) [13, 14, 15]. For es-
timates of the Allen–Cahn approximation see for example [53]. Another
possibility is to track the evolving surface explicitly using a parametric ap-
proach [51, 16, 17].

For an extensive review of the early numerical approaches see [48].
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9. Volume-preserving and fourth-order problems

9.1. Volume preserving flow. In many applications it is important to
impose that the volume of the set surrounded by the evolving surface is
preserved. Examples include crystal growth, droplet motion and bubbles.
A common way to achieve this for the mean curvature flow is to add a
Lagrange multiplier to the velocity law. Consider a family of hypersurfaces
{Γt} with Γt = ∂Ωt for some evolving set {Ωt} that evolves with the velocity
law

V = g(ν, κσ + λ) on Γt = ∂Ωt.

Here the forcing term λ = λ(t) is chosen so that

|Ωt| = |Ω0| t ≥ 0.

If {∂Ωt} is sufficiently smooth, we have

d

dt
|Ωt| =

∫
∂Ωt

V dHn−1,

and λ(t) must be chosen so that∫
∂Ωt

g(ν, κσ + λ(t)) dHn−1 = 0, t ≥ 0.

In general, the regularity of λ is not clear.
The problem has been studied in the case of linear dependence on κσ,

V =M(ν)(κσ + λ).

For convex initial data, the existence of solutions and convergence to the
Wulff shape Wσ was shown in [8] for smooth σ, and in [19] for nonsmooth
σ, generalizing the classical result for the isotropic mean curvature flow
of [104]. For a planar crystalline flow, a similar result has been proved by
[168]. Moreover, it approximates corresponding smooth problems as proved
in [164].

For general initial data, the existence of solutions still remains mostly
open. In the isotropic case, global existence results are available under a
certain energy convergence assumption [135, 125].

One can also consider initial data for which topological changes do not
occur like star-shaped sets in the isotropic case [118] or sets that satisfy a
certain reflection symmetry property in the anisotropic case including some
crystalline flow [119].
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9.2. Fourth-order problem. We begin with a fourth-order model to de-
scribe a relaxation process of a crystal surface by surface diffusion under
the roughening temperature, which is proposed by [152] as mentioned in
Section 2. It is explicitly written as

wt = −∆
(
div (∇w/|∇w|) + β div (|∇w|∇w)

)
with β > 0, where w(x, t) represents the height of a crystal at x and at time
t. Fortunately, this can be handled by the theory of maximal monotone op-
erators [74], [86]. Let H1

av(Tn) denote the space of average-free H1 functions
equipped with the inner product

(f, g)1 :=
n∑
i=1

∫
Tn

∂xif∂xig dx.

In other words,

H1
av(Tn) =

{
f ∈ L2(Tn)

∣∣∣ ∥f∥H1 = (f, f)
1/2

H1 <∞,

∫
Tn

fdx = 0

}
.

It is of course a Hilbert space. This space is densely embedded in

L2
av(Tn) =

{
f ∈ L2(Tn)

∣∣∣ ∫
Tn

fdx = 0

}
.

The dual space of H1
av (under L2 pairing) is denoted by H−1

av . The canonical
isomorphism from H1

av to H−1
av is denoted by −∆ and it agrees with the

usual minus Laplacian for distributions. The space H−1
av (Tn) is a Hilbert

space equipped with the inner product

(f, g)−1 :=
〈
(−∆)−1f, g

〉
,

where ⟨ , ⟩ denotes a canonical pairing of H1
av and H−1

av . This H−1
av (Tn) is

our basic Hilbert space. We set energy

Eβ,p(w) :=
∫
Tn

|∇w|+ β

p

∫
Tn

|∇w|pdx

with p > 1, β ≥ 0. We consider the gradient flow of Eβ,p in H−1
av (Tn), i.e.,

(9.1) wt ∈ −∂Eβ,p(w).

Formally, this is an equation

wt = −∆
(
div (∇w/|∇w|) + β div

(
|∇w|p−2∇w

) )
.

If β = 0, this is nothing but the fourth-order total variation flow. A general
theory guarantees the global-in-time existence of a solution to (9.1) with
β ≥ 0, p > 1 for any initial data w0 ∈ H−1

av (Tn) since Eβ,p is a lower
semicontinuous convex functional on H−1

av (Tn). The important difference
between second-order and fourth-order is that in the latter the comparison
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principle fails. Here is an example for the case β = 0, which implies that
the comparison principle should not hold.

Theorem 9.1 ([74]). For the fourth-order total variation flow (9.1) (β = 0),
the solution may become discontinuous in space even if the initial data is
Lipschitz continuous.

In [74], this is proved by giving an explicit example for n = 1, which works
for general n. For the second-order problem, the comparison principle yields
Lipschitz preserving property. Indeed, if the initial data w0 is L-Lipschitz,
then

w0(x) ≤ w0(x+ h) + Lh =: w0h.

The solution starting with w0h is w(x+h, t)+Lh. If the comparison principle
were valid, we would have

w(x, t) ≤ w(x+ h, t) + Lh.

Similarly,
w(x, t) ≥ w(x+ h, t)− Lh,

so we would have |w(x, t)− w(x+ h, t)| ≤ Lh. Theorem 9.1 shows that the
comparison principle fails for (9.1) with β = 0.

Note that for β > 0, w(·, t) is spatially continuous for n = 1 since
Eβ,p(w) <∞ implies continuity.

There is a characterization of the subdifferential ∂Eβ,p in H−1
av (Tn) or

similar space see [116], [117] for β > 0 and [86] for β = 0. The minimal
section is also calculated in [116] and [74] in the case n = 1; for radial case
with β > 0, see [117]. There are a few differences between second-order and
fourth-order problem. First, the value of ∂◦Eβ,p on a facet is not determined
in a neighborhood of a facet in fourth-order problem. This is in some sense
expected because of a “nonlocal property” of a norm on H−1

av . Second, the
value of ∂◦Eβ,p may contain δ-type function (n = 1), which yields instant
discontinuity of a solution in Theorem 9.1.

Of course, there are several common properties between second-order
and fourth-order problems. For example, the solution will stop to move in
finite time. In fourth-order problems, it is only known for n = 1, 2, 3, 4. Let
T∗(w0) be the extinction time of the solution of (9.1), i.e.,

T∗(w0) = sup {t ∈ R | w(x, t) ̸≡ 0} .

Theorem 9.2 ([86]). Let w be the solution of (9.1) with initial data w0 ∈
H−1

av . There exists a constant C depending only on ωi and n (Tn = Πn
i=1(R/ωiZ))
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(independent of dilation) such that

T∗(w0) ≤ C∥w0∥H−1
av

for n = 4

T∗(w0) ≤
∥w0∥X
a

(1 + a∥w0∥αH−1
av

C∥w0∥αX

)1/α

− 1

 for 1 ≤ n ≤ 4, 1 ≤ p ≤ ∞

with θ ∈
(
1
2
, 1
]
satisfying 1 + n

2
= θ(n − 1) + (1 − θ)(3 + n/p), where

a = (ω1 · · ·ωN)1/p, α = 2− 1/p and ∥w0∥X = ∥(−∆)−1w0∥Ẇ−1,p.

Here, Ẇ−1,p is the dual of the homogeneous Sobolev space Ẇ 1,p, i.e.,

∥f∥Ẇ−1,p = sup

{∫
Tn

fφ dx
∣∣∣ φ ∈ C∞(Tn), ∥∇φ∥Lp′ ≤ 1

}
, 1/p+1/p′ = 1.

The proof for n = 4 is easy, so we give it here for β = 0; the case β > 0

can be proved essentially in the same way. We multiply the equation

wt = (−∆)div (∇w/|∇w|)

with (−∆)−1w and integrate in space to get a dissipation identity

(9.2) 1

2

d

dt
∥w∥2

H−1
av

=

∫
Tn

|∇w|

since (u, v)−1 = ⟨(−∆)−1u, v⟩. In the case n = 4 and θ = 1, by the Sobolev
and the Calderón-Zygmund inequality for ∇(−∆)−1/2, we have

∥w∥H−1
av

=
∥∥(−∆)−1/2w

∥∥
L2 ≤ A′ ∥∥(−∆)−1/2w

∥∥
Lp ≤ Ap∥w∥Lp , 1/2 = 1/p−1/4

for some constants A′ and Ap. Again by the Sobolev inequality, there is a
constant S satisfying

∥w∥L4/3 ≤ S

∫
Tn

|∇w|.

We now conclude that

∥w∥H−1
av

≤ A4/3S

∫
Tn

|∇w|.

Thus we conclude
1

2

d

dt
∥w∥2

H−1
av

≤ −(A4/3S)
−1∥w∥H−1

av
,

which yields T∗(w0) ≤ C∥w0∥H−1
av

with C = A4/3S. For general case, we
establish an interpolation inequality

∥w∥H−1
av

≤ C
∥∥(−∆)−1w

∥∥1−θ
Ẇ−1,p

(∫
Tn

|∇w|
)θ

and a rough growth estimate for a weaker norm
d

dt

∥∥(−∆)−1w
∥∥
Ẇ−1,p ≤ a1/p.
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We then apply these inequalities to the dissipation identity (9.2) to get the
desired estimate. For details, see [86], [87]. Combining a dissipation identity,
an interpolation inequality and a growth of a weaker norm is also a key idea
to estimate the coarsening rate in a surface diffusion flow as studied in [121].

There are several numerical studies for the above fourth-order singular
diffusion equations. A numerical computation for β > 0, p = 3 is done by
[122]. Their numerical scheme regularizes the singularity. A duality based
numerical scheme which applies the forward-backward splitting has been
proposed in [89]. A Bregman method is adjusted to the fourth-order problem
by [94], where the singularity at ∇w = 0 is not regularized.

We are interested in a polygonal flow by surface diffusion. Formally, a
typical example is V = −∆κσ when σ is crystalline. In [37] evolution by
polygonal flow is proposed and there are several numerical tests. However,
there is no general notion for a solution of closed curves. It is not clear what
class of polygonal flows is preserved during evolution. Recently, in [76] it
is shown that there is a special class of periodic piecewise linear graph-like
curves which is preserved under the evolution provided that the problem is
written as a gradient flow of a lower semicontinuous convex function.

If the dependence on κσ is nonlinear like in (2.3), no notion of a general
solution is known. By studying a special solution of (2.3), a new phenomenon
is found in [127] with discussion on a relation with a step motion. There is
a numerical work to calculate (2.3) in [46].

Recently, the fourth-order total variation flow equation is studied in Rn

[88]. In this case, the definition of a solution itself is not direct, especially for
n = 1, 2. A notion of calibrability is introduced there, and it is shown that
all balls are calibrable. However, unlike in the second-order total variation
flow, the outside of a ball is calibrable if and only if n ̸= 2. If n ̸= 2, all
annuli are calibrable. However, in the case n = 2, an annulus is calibrable if
and only if it is sufficiently thin. Moreover, for n = 1, 2, the solution stays
non-zero for all time if the initial data is a characteristic function of a ball;
the finite extinction property does not hold in the case of Rn (n = 1, 2) [88].

Appendix A. A direct proof of properties of Ψ

In this section we give a direct proof of the convexity and lower semi-
continuity of Ψ used in Theorem 5.1, defined in (5.5) as

Ψ(v) := inf {∥σ◦(z)∥∞ | v = − div z, z ∈ L∞(Tn)}, v ∈ L2(Tn).
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Lemma A.1. Ψ is convex and lower semicontinuous. Moreover, if Ψ(v) <

∞ for some v ∈ L2(Tn) then the infimum is attained and therefore it is a
minimum.

Proof. Step 1 We first show the lower semicontinuity of Ψ. Suppose that
vk → v in L2(Tn) and L := lim infk→∞ Ψ(vk) < ∞. By selecting a subse-
quence (not relabeled), we can assumeΨ(vk) <∞ for all k and limk→∞ Ψ(vk) =

L. By definition of Ψ we can fix zk with vk = − div zk and ∥σ◦(zk)∥ <

Ψ(vk) +
1
k
for every k. Since ∥zk∥∞ ≤ C ∥σ◦(zk)∥∞ for some C > 0, (zk)k∈N

is bounded in L∞ and hence we can take a further subsequence (not re-
labeled) such that zk → z weakly* in L∞ to some vector field z. Since
vk = − div zk, we have∫

zk · ∇ϕ dx =

∫
vkϕ dx for all k ∈ N, ψ ∈ C∞

c (Tn).

Sending k → ∞ we see that v = − div z in the sense of distributions. By
Lemma A.2 below, we have

Ψ(v) ≤ ∥σ◦(z)∥ ≤ lim inf
k→∞

∥σ◦(zk)∥ = lim inf
k→∞

Ψ(vk).

Step 2 The fact that the infimum is attained when Ψ(v) < ∞ can
be proved by a direct method of the calculus of variations. If (zk)k∈N is
a minimizing sequence, as discussed in Step 1, by compactness we may
assume that it has an L∞ weak* limit z by taking a subsequence. Step 1
also shows the lower semicontinuity in this weak* topology. Thus, z must
be a minimizer.

Step 3 Convexity of Ψ is straightforward. Take v1, v2 with Ψ(vi) <∞.
By Step 2, we can choose minimizing zi with vi = − div zi and Ψ(vi) =

∥σ◦(zi)∥∞ for i = 1, 2. We have

− div(tz1 + (1− t)z2) = tv1 + (1− t)v2,

and by convexity of ∥σ◦(z)∥ in z, we have

Ψ(tv1 + (1− t)v2) ≤ ∥σ◦(tz1 + (1− t)z2)∥∞
≤ t ∥σ◦(z1)∥∞ + (1− t) ∥σ◦(z2)∥∞
= tΨ(v1) + (1− t)Ψ(v2).

This finishes the proof. □

In the proof above we used the following weak* lower semicontinuity of
∥σ◦(z)∥∞.

Lemma A.2. If zk → z weakly* in L∞(Tn;Rn) then

∥σ◦(z)∥∞ ≤ lim inf
n→∞

∥σ◦(zk)∥∞ .
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Proof. Step 1 : We first show the following claim: If z ∈ L∞(Tn;Rn) then

∥σ◦(z)∥∞ = sup

{∫
z · p dx : p ∈ L1(Tn;Rn), ∥σ(p)∥1 ≤ 1

}
.

To show this, we start with the observation that σ◦(z) = sup {z · p : σ(p) ≤ 1} =

supm z · pm, where {pm}m∈N is a dense subset of {p : σ(p) ≤ 1}.
Clearly ∥σ◦(z)∥ <∞. Fix now ε > 0 and define the measurable set

A := {x : σ◦(z(x)) > ∥σ◦(z)∥∞ − ε} =
⋃
m

Am,

with

Am = {x : z(x) · pm > ∥σ◦(z)∥∞ − ε}.

By definition of the L∞ norm we have |A| > 0 and so there exists m such
that |Am| > 0. Define

p(x) :=
1

|Am|
pm1Am(x).

Clearly
∫
σ(p(x)) dx = σ(pm) ≤ 1 and∫

z · p dx =
1

|Am|

∫
Am

z · pm dx ≥ ∥σ◦(z)∥∞ − ε

by definition of Am. Since ε > 0 was arbitrary, the claim is proved.
Step 2 : For any p ∈ L1(Tn;Rn) we have∫

zk · p dx ≤
∫
σ◦(zk)σ(p) dx ≤ ∥σ◦(zk)∥∞ ∥σ(p)∥1

As zk → z weakly* in L∞, we deduce∫
z · p dx ≤ ∥σ(p)∥1 lim inf

n→∞
∥σ◦(zk)∥∞

By claim in Step 1, we have

∥σ◦(z)∥∞ = sup
∥σ(p)∥1≤1

∫
z · p dx ≤ lim inf ∥σ◦(zk)∥∞ .

This finishes the proof. □

Remark A.3. Note that Tn can be replaced by any open set U ⊂ Rn in the
above lemmas. If |U | = ∞, one might have to replace Am in the definition
of p(x) in Step 1 of proof of Lemma A.2 by its subset of a finite positive
measure.
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[148] N. Požár, On the self-similar solutions of the crystalline mean curva-
ture flow in three dimensions, arXiv:1806.02482.

[149] Ju.G. Rešetnjak, The weak convergence of completely additive vector-
valued set functions, Sibirsk. Mat. Z., 9 (1968), 1386–1394.

[150] J. A. Sethian, Level set methods and fast marching methods. Evolv-
ing interfaces in computational geometry, fluid mechanics, computer
vision, and materials science. Second edition. Cambridge Monographs
on Applied and Computational Mathematics, 3. Cambridge Univer-
sity Press, Cambridge, 1999.

[151] H. M. Soner, Motion of a set by the curvature of its boundary. J.
Differential Equations 101 (1993), 313–372.

[152] H. Spohn, Surface dynamics below the roughening temperature. J.
Phys. I. France 3 (1993), 69–81.

[153] A. Stancu, Uniqueness of self-similar solutions for a crystalline flow.
Indiana Univ. Math. J. 45 (1996), 1157–1174.

[154] A. Stancu, Asymptotic behavior of solutions to a crystalline flow.
Hokkaido Math. J. 27 (1998), 303–320.

[155] J. E. Taylor, Crystalline variational problems. Bull. Amer. Math. Soc.
84 (1978), 568–588.

[156] J. E. Taylor, Constructions and conjectures in crystalline nondifferen-
tial geometry. Differential geometry, 321–336, Pitman Monogr. Sur-
veys Pure Appl. Math., 52, Longman Sci. Tech., Harlow, 1991.

[157] J. E. Taylor, Motion by crystalline curvature, in Computing Optimal
Geometries Videotape, J. E. Taylor, ed., Selected Lectures in Mathe-
matics, Amer. Math. Soc. (1991), 63–65 plus video.

[158] J. E. Taylor, Mean curvature and weighted mean curvature. Acta
Metall. Mater. 40 (1992), 1475–1485.

[159] J. E. Taylor, Geometric Crystal Growth in 3D via Faceted Interfaces,
in Computational Crystal Growers Workshop (Jean E. Taylor, ed.),
Selected Lectures in Mathematics, Amer. Math. Soc. (1992), 111–113
plus video.



MOTION BY CRYSTALLINE-LIKE MEAN CURVATURE: A SURVEY 79

[160] J. E. Taylor, Motion of curves by crystalline curvature, including triple
junctions and boundary points. Differential geometry: partial differ-
ential equations on manifolds (Los Angeles, CA, 1990), 417–438, Proc.
Sympos. Pure Math., 54, Part 1, Amer. Math. Soc., Providence, RI,
1993.

[161] J. E. Taylor and J. W. Cahn, Diffuse interfaces with sharp corners and
facets: phase field models with strongly anisotropic surfaces. Phys. D
112 (1998), 381–411.

[162] J. E. Taylor, J. W. Cahn and A. C. Handwerker, Geometric models
of crystal growth. Acta. Metal. 40 (1992), 1443–1474.

[163] T. K. Ushijima and H. Yagisita, Convergence of a three-dimensional
crystalline motion to Gauss curvature flow. Jpn. J. Ind. Appl. Math.
22 (2005), 443–459.

[164] T. K. Ushijima and S. Yazaki, Convergence of a crystalline approx-
imation for an area-preserving motion. J. Comput. Appl. Math. 166
(2004), 427–452.

[165] J. Watanabe, Approximation of nonlinear problems of a certain type.
Numerical analysis of evolution equations (Kyoto, 1978), 147–163,
Lecture Notes Numer. Appl. Anal., 1, Kinokuniya Book Store, Tokyo,
1979.

[166] A. A. Wheeler and G. B. McFadden, A ξ-vector formulation of
anisotropic phase-field models: 3D asymptotics. European J. Appl.
Math. 7 (1996), 367–381.

[167] G. Wulff, Zur Frage der Geschwindigkeit des Wachsthums und der
Auflösung der Krystallflächen. Zeitschrift für Kristallographie 34, 449–
530.

[168] S. Yazaki, On an area-preserving crystalline motion. Calc. Var. Par-
tial Differential Equations 14 (2002), 85–105.

[169] S. Yazaki, Motion of nonadmissible convex polygons by crystalline
curvature. Publ. Res. Inst. Math. Sci. 43 (2007), 155–170.

Graduate School of Mathematical Sciences, The University of Tokyo,
3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan

Email address: labgiga@ms.u-tokyo.ac.jp

Faculty of Mathematics and Physics, Institute of Science and Engineer-
ing, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan

Email address: npozar@se.kanazawa-u.ac.jp


	1. Introduction
	2. Some models
	3. Polygonal flow
	4. Explicit solutions
	5. Approach by the theory of maximal monotone operators
	5.1. Abstract theory
	5.2. Calibrability and Cheeger sets
	5.3. Curvature-like quantity
	5.4. Comparison and approximation

	6. Approach by the theory of viscosity solutions
	6.1. Definition of viscosity solutions
	6.2. Comparison principle
	6.3. Existence of solutions
	6.4. Convergence of various approximations

	7. Approach by distance functions
	8. Some numerics
	9. Volume-preserving and fourth-order problems
	9.1. Volume preserving flow
	9.2. Fourth-order problem

	Appendix A. A direct proof of properties of 
	Acknowledgment
	References

