
NOTE: MATH FOR NAVIER-STOKES AND SPH

NORBERT POŽÁR

In this note I want to show the minimal rigorous mathematical derivation of
Navier-Stokes equations and other conservation laws. This approach is based on
the flow map and the change of variables formula to minimize to need for arbitrary
assumptions or “intuition”. The change of variables formula is a well-known result
that is used in many places in mathematics. For a complete proof in a very general
context see [EG, Section 3.4.3].

1. Description of the fluid motion

Mathematically, we describe the evolution of a fluid as the motion of material
points along trajectories in space and time. Let us fix a dimension n ∈ N and
we will assume that the fluid fills the whole Rn at all times. We will assume also
that each material point moves along a smooth trajectory and that trajectories
do not intersect. We will use the position of material points at t = 0 as the
“tag” of the material point. That is, if ξ ∈ Rn is a fixed Euclidean vector, the
material point ξ refers to the material point that is located at the position ξ at time
t = 0. Note that material points do not have any physical meaning besides being
the “tracers” that follow the macroscopic, averaged motion of the fluid. They are
definitely not molecules or atoms of the fluid, whose motion is much more chaotic
and complicated.

We will denote the position of the material point ξ at time t ∈ R by Xξ(t) ∈ Rn.
We might drop the superscript ξ from the notation if it is clear from the context.
Note that by the tagging explained above, Xξ(0) = ξ.

In the following computations, we will assume that the flow is regular in the
following way:

(a) The function (map) ϕ(ξ, t) := Xξ(t) as a function ϕ : Rn × R → Rn is
smooth (at least twice continuously differentiable).

(b) The map ϕt : Rn → Rn defined as ϕt(ξ) := ϕ(ξ, t) = Xξ(t) is invertible for
every t ∈ R.

(c) The determinant of the Jacobian matrix1 is nonzero,

detDξϕ(ξ, t) ̸= 0 for all ξ ∈ Rn, t ∈ R.(1.1)

The last condition guarantees that the material points do not become “infinitely”
dense as we will see later. The second condition asserts that the fluid fills the
whole domain without holes and that no two material points occupy the same
space. Mathematically, the above conditions will allow us to use the change of
variables formula, differentiate and integrate by parts.

We will refer to the function ϕ as the flow map. This map completely captures
the kinematic evolution of the fluid.
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1Dξϕ(ξ, t) is the matrix with entries ∂ϕi

∂ξj
(ξ, t)
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However, we also want to keep track of other physical properties of the fluid like
density, velocity, temperature, etc. There are two ways how to do achieve this:

Eulerian description: Keep track of what the value of the property is at a
given fixed point x ∈ Rn in the physical space at a given time t ∈ R.

Lagrangian description: Keep track of what the value of the property is at
the given material point ξ ∈ Rn at a given time t ∈ R.

The fundamental difference is in where in the physical space we focus our attention.
In the Eulerian description, we fix a point in the physical space. On the other
hand, the position of the material point ξ in the Lagrangian description at time t
is Xξ(t), which moves in the physical space with time. These two descriptions are
equivalent in that they both allow us to describe the physical system and we will
show how to convert between them, but they differ in how difficult it is to answer
various questions about the system:

Change in time: How does a property change with time? Since physical
properties are carried around (transported) by the fluid, it is easier to
understand their change in time if we follow a material point. Here the
Lagrangian description is convenient.

Change in space: How does the property change in the physical space? What
is the value like on the neighboring material points? In this case, this infor-
mation is provided much more conveniently by the Eulerian description. In
the Lagrangian description, we have to find the neighboring material points
first. That is possible, but much less convenient.

To distinguish between the descriptions, we will denote the properties in the
Eulerian description by lowercase letters and in the Lagrangian description by
uppercase letters. For example, f(x, t) is the value of the property f at point
(x, t) ∈ Rn×R in the Eulerian description, and F ξ(t) is the value of the same prop-
erty at time t ∈ R on the material point ξ ∈ Rn. We have the following fundamental
relationship between these descriptions:

F ξ(t) = f(Xξ(t), t) for all ξ ∈ Rn, t ∈ R.(1.2)

In other words, the value of the physical property f on the material point ξ is the
same as the value of this physical property at the point in the physical space Xξ(t)
where the material point ξ is located at time t. Since the flow map ϕt(ξ) := Xξ(t)
is invertible, we can also write

f(x, t) = Fϕ−1
t (x)(t) for all x ∈ Rn, t ∈ R.(1.3)

Recall again that ξ in (1.2) represents the tag of the material point, while x is the
position in the physical space in (1.3).

Let us introduce the symbols for the important physical properties2.

Eulerian Lagrangian
position x Xξ(t)
velocity u(x, t) Uξ(t)
density ρ(x, t) Rξ(t)
...

2Note that the uppercase ρ is actually P, but I guess that is more confusing than R.
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By definition, the velocity of the fluid at a given point is equal to the velocity of
the material point located there. In other words,

Uξ(t) =
d

dt
Xξ(t) for all ξ ∈ Rn, t ∈ R.(1.4)

Thus by (1.2) we have

u(Xξ(t), t) =
d

dt
Xξ(t) for all ξ ∈ Rn, t ∈ R.(1.5)

By differentiating the value of the property in the Lagrangian description with
respect to time, d

dtF
ξ(t), we get the rate of change of the property along a material

point ξ. This is called also the material derivative or the substantial derivative.
This the rate of change that a given material point observes.

By (1.2), the chain rule and (1.5) we get immediately an expression in terms of
the derivatives of the property in the Eulerian description,

d

dt
F ξ(t) =

d

dt
f(Xξ(t), t) = ∇f(Xξ(t), t) · d

dt
Xξ(t) +

∂f

∂t
(Xξ(t), t)

= ∇f(Xξ(t), t) · u(Xξ(t), t) +
∂f

∂t
(Xξ(t), t).

Rearranging this, we have

d

dt
F ξ(t) =

∂f

∂t
(Xξ(t), t) + u(Xξ(t), t) · ∇f(Xξ(t), t) for any ξ ∈ Rn, t ∈ R.(1.6)

1.1. Remark. It is common to introduce the operator of the material derivative

D

Dt
:=

∂

∂t
+ u · ∇,

but I am yet to understand the utility of this besides making things more confusing.

1.2. Exercise. Check that (1.5) follows from (1.6) with F ξ(t) := Xξ(t) and f(x, t) := x.

2. Conservation laws

The conservation of various physical quantities in the evolution of the fluid can
be expressed by introducing their density functions first.

By a measurable physical quantity3 we mean a value ψ(Ω, t) that we can assign
to any given (sufficiently nice) subdomain Ω ⊂ Rn at any given time t ∈ R and
there exists a density function f = f(x, t) such that

ψ(Ω, t) =

∫
Ω

f(x, t) dx.(2.1)

Examples are mass, linear momentum, angular momentum and energy, and trivially
the volume.

2.1. Remark. Note that the density is defined as the amount of the physical quantity
per unit volume of the physical space and therefore it makes sense to use the Eulerian
description in (2.1). Keeping track of the physical quantity for a “chunk” of fluid in the
spirit of the Lagrangian description will be handled below by introducing a moving domain
{Ωt}t∈R in (2.2) that contains always the same material points at all times and is in a way
“tranported” by the fluid.

3Measurable physical quantity is not a standard terminology, but is rather motivated as the
analogue of a measure in the measure theory.
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Since we will consider only such quantities that are transported by the fluid, we
want to look at the value of the quantity in a moving domain {Ωt}t∈R that contains
at each time t the same material points, that is,

Xξ(τ) ∈ Ωτ for some ξ ∈ Rn, τ ∈ R ⇒ Xξ(t) ∈ Ωt for all t ∈ R.
Note that the above implies

Ωt =
{
Xξ(t) : ξ ∈ Ω0

}
= {ϕt(ξ) : ξ ∈ Ω0} =: ϕt(Ω0).(2.2)

Let us therefore consider

ψ(Ωt, t) =

∫
Ωt

f(x, t) dx for t ∈ R.

We want to express the time derivative of t 7→ ψ(Ωt, t) in terms of the derivatives
of the density function f . The result is given by the following theorem.

2.2. Theorem (Transport theorem, Differentiation formula for moving regions).

d

dt

∫
Ωt

f(x, t) dx =

∫
Ωt

(
∂f

∂t
+ div(fu)

)
(x, t) dx

=

∫
Ωt

∂f

∂t
(x, t) dx+

∫
∂Ωt

f(x, t)u(x, t) · ν∂Ωt(x, t) dS

(2.3)

for all x ∈ Rn, t ∈ R.
Proof. This is a direct consequence of the change of variables formula. Let us
introduce the Jacobian J(ξ, t) to be the determinant of the Jacobian matrix of the
map ϕt at ξ,

J(ξ, t) := detDϕt(ξ) ξ ∈ Rn, t ∈ R.(2.4)

Since Dϕ0 ≡ I, by (1.1) we conclude that J(ξ, t) = detDϕt(ξ) > 0
We claim that

∂J

∂t
(ξ, t) = J(ξ, t)(div u)(ϕt(ξ), t).(2.5)

This follows from the formula for the derivative of a determinant of an invertible
matrix

d

dt
detA(t) = detA(t) tr(A(t)−1A′(t)).(2.6)

Indeed, let us rewrite (1.5) using ϕ(x, t) = Xξ(t) as

u(ϕ(ξ, t), t) =
∂ϕ

∂t
(ξ, t)(2.7)

and differentiate the i-th component of both sides with respect to ξj to obtain∑
k

∂ui
∂xk

(ϕ(ξ, t), t)
∂ϕk
∂ξj

(ξ, t) =
∂

∂t

∂ϕi
∂ξj

(ξ, t).

This can be written as

Dxu(ϕt(ξ), t)Dϕt(ξ) =
∂

∂t
Dϕt(ξ).

Since Dϕt(ξ) is invertible, we can multiply both sides by (Dϕt(ξ))
−1, take the trace

and use that trAB = trBA to obtain

trDxu(ϕt(ξ), t) = tr

((
∂

∂t
Dϕt(ξ)

)
(Dϕt(ξ))

−1

)
= tr

(
(Dϕt(ξ))

−1 ∂

∂t
Dϕt(ξ)

)
.
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The left-hand side is just (div u)(ϕt(ξ), t), and thus using this in (2.6) we recover
(2.5).

By (2.2), the change of variables formula reads∫
Ωt

f(x, t) dx =

∫
Ω0

f(ϕt(ξ), t)J(ξ, t) dξ.

Since the term on the right-hand side is an integral over a domain independent of t,
it is easier to differentiate since we can exchange the integration and differentiation.
We have

d

dt

∫
Ωt

f(x, t) dx =

∫
Ω0

∂

∂t
(f(ϕt(ξ), t)J(ξ, t)) dξ.(2.8)

By the product rule, chain rule, (2.7) and (2.5), we get

∂

∂t
(f(ϕ(ξ, t), t)J(ξ, t)) =

[
∂f

∂t
+ u · ∇f + f div u

]
(ϕ(ξ, t), t)J(ξ, t)

=

[
∂f

∂t
+ div(fu)

]
(ϕ(ξ, t), t)J(ξ, t).

Plugging this into (2.8) and using the change of variables back to x and Ωt, we
obtain (2.3). The latter form is a consequence of the divergence theorem. □

2.3. Remark (“Physical meaning” of the divergence operator). Volume of a set Ω denoted
at time t can be treated as any other physical quantity with the constant density function
1, that is,

V (Ω, t) =

∫
Ω

dx for any Ω ⊂ Rn, t ∈ R.

The transport theorem, Theorem 2.2, implies

d

dt
V (Ωt, t) =

∫
Ωt

div u(x, t) dx

for any moving domain {Ωt}t∈R being transported by the fluid. Therefore div u can be
viewed as the expansion rate of the fluid per unit volume. An incompressible fluid will
therefore always have div u ≡ 0.

2.4. Conservation of mass. Let us consider the mass m(Ω, t) of a region of fluid
Ω at time t ∈ R with density function ρ = ρ(x, t). Since the mass of a given chunk
of fluid does not change, given a moving domain {Ωt}t∈R being carried by the fluid
as in (2.2), the conservation law states that for any t ∈ R

m(Ωt, t) = m(Ω0, 0) ⇔ d

dt
m(Ωt, t) = 0.

The transport theorem, Theorem 2.2, yields

0 =
d

dt

∫
Ωt

ρ(x, t) dx =

∫
Ωt

(
∂ρ

∂t
+ div(ρu)

)
(x, t) dx.

Since we can choose any t ∈ R and any (sufficiently nice) Ωt ⊂ Rn, we may conclude
that

∂ρ

∂t
+ div(ρu) ≡ 0(2.9)
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On the other hand, using the conservation and the change of variables directly,
we have ∫

Ω0

ρ(x, 0) dx =

∫
Ωt

ρ(x, t) dx =

∫
Ω0

ρ(Xξ(t), t)J(ξ, t) dξ,

where the Jacobian J was introduced in (2.4). Since Ω0 and t are arbitrary we have
a formula for the density in the Lagrangian description

Rξ(t) = ρ(Xξ(t), t) =
ρ(ξ, 0)

J(ξ, t)
=
Rξ(0)

J(ξ, t)
.(2.10)

The Jacobian J(ξ, t) therefore represents the local compression ratio of the fluid
over time t. Recall that by the assumption (1.1) J(ξ, t) > 0 and therefore the
above is always a well-defined finite quantity.

2.5. Exercise. Derive (2.9) directly by taking the time derivative of Rξ(t) in (2.10) and
using (2.5).

2.6. Remark. Using the divergence theorem (integration by parts), we get for any Ω ⊂ Rn

and t ∈ R

0 =

∫
Ω

(
∂ρ

∂t
+ div(ρu)

)
(x, t) dx =

∫
Ω

∂ρ

∂t
(x, t) dx+

∫
∂Ω

ρ(x, t)u(x, t) · ν∂Ω(x, t) dS.

From this we see that ρu is the flux of mass.

2.7. Conservation of momentum. The linear momentum4 M(Ω, t) has density
function f(x, t) = ρ(x, t)u(x, t) by definition. Newton’s law states that the momen-
tum of a chunk of fluid changes by the action of a force, that is, the momentum of
the fluid contained in the moving domain {Ωt}t∈R satisfies

d

dt
M(Ωt, t) = Φ(Ωt, t),(2.11)

where Φ(Ωt, t) is the total force acting on the chunk at time t. This total force
can be split into volume (body) forces like gravity acting per unit volume with unit
density b(x, t) and surface forces like pressure that represent the interaction with
the surrounding fluid with unit density s(x, t, ν) per unit surface area with outer
unit normal vector ν,

Φ(Ω, t) :=

∫
Ω

b(x, t) dx+

∫
∂Ω

s(x, t, ν∂Ω(x, t)) dS.

Let us consider the components of the momentum separately. For the component
Mi, 1 ≤ i ≤ n, the transport theorem, Theorem 2.2, yields

d

dt
Mi(Ωt, t) =

d

dt

∫
Ωt

ρ(x, t)ui(x, t) dx =

∫
Ωt

(
∂(ρui)

∂t
+ div(ρuiu)

)
(x, t) dx.

Since t ∈ R and Ωt are arbitrary, from (2.11) we get for any Ω ⊂ Rn, t ∈ R and
i = 1, . . . , n∫

Ω

(
∂(ρui)

∂t
+ div(ρuiu)− bi

)
(x, t) dx =

∫
∂Ω

si(x, t, ν∂Ω(x, t)) dS.(2.12)

If we can show that s(x, t, p) is linear in p, we get the standard form of this
conservation law. One can as well assume that s(x, t, p) = σ(x, t)p for some matrix

4Note that for M as a transported quantity there is no notion of Eulerian vs. Lagrangian
description. Uppercase M is just the standard notation for linear momentum.
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Figure 1. Domain Ωh.

function σ, but we will show that there is a mathematical reason why this is the
only possible form.

2.8. Theorem (Cauchy’s theorem). If s is a continuous function, then there exists
a matrix-valued function σ = σ(x, t) such that s(x, t, q) = σ(x, t)q for all q ∈ Rn,
|q| = 1.

Proof. We will show this using a scaling argument with the help of (2.12). Note that
the term on the left-hand side in (2.12) is proportional to the volume of Ω, while the

right-hand side is proportional to the surface area of ∂Ω. Since A(∂Ω) ≥ C|Ω|n−1
n

by the isoperimetric inequality, we see that the surface area will be much bigger
than the volume for small domains. The only way this is possible is if there is
some cancellation in the integrand on the right-hand side. We will see that this
cancellation happens only if the integrand s(x, t, ν) is linear in ν.

For simplicity, we assume that x = 0. Let us first consider a vector q ∈ Rn with
size |q| = 1 such that all its components are negative, qi < 0 for all i = 1, . . . , n.
For h define the domain

Ωh := {x : xi < 0 for i = 1, . . . , n, x · q < h}

Ωh is the n-dimensional simplex with vertices 0, h
q1
e1, . . . ,

h
qn
en, see Figure 1. It

has n + 1 flat sides denoted Γ0, Γ1, . . . , Γn opposite to each of the above vertices
with normal vectors q, e1, . . . , en. The volume Ωh is given as hn

n!
∏

i |qi|
. The area

A(Γ0) of the flat side Γ0 opposite to the vertex 0 is hn−1

(n−1)!
∏

i |qi|
, and the area A(Γj)

of the flat side Γj opposite to the vertex h
qj
ej it is

qjh
n−1

(n−1)!
∏

i |qi|
. In particular,

A(Γ0)

A(∂Ωh))
=

1

1 +
∑

i |qi|
,

A(Γj)

A(∂Ωh))
=

qj
1 +

∑
i |qi|

.(2.13)
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Let us denote the left-hand side in (2.12) for Ω = Ωh by µi(h). Then we can
write (2.12) as ∫

∂Ωh

s(x, t, ν∂Ωh
(x, t)) dS = µ(h).

Since the integrand on the left-hand side of (2.12) is continuous, there exists K > 0
such that |µ(h)| ≤ K|Ωh| ≤ Chn.

On the other hand, we can compute∫
∂Ωh

s(x, t, ν∂Ωh
(x, t)) dS =

∫
Γ0

s(x, t, q) dS +

n∑
i=1

∫
Γi

s(x, t, ei) dS.

If we divide the above equation by the area of the boundary A(∂Ωh), we get

1

A(∂Ωh)

(∫
Γ0

s(x, t, q) dS +

n∑
i=1

∫
Γi

s(x, t, ei) dS

)
=

µ(h)

A(Ωh)
.

Sending h→ 0 using the continuity of the integrands and observing that the right-
hand side converges to 0, and using (2.13), we obtain

s(0, t, q) +

n∑
i=1

s(0, t, ei)|qi| = 0

In particular, we see that

s(0, t, q) = −
n∑

i=1

s(0, t, ei)|qi| =
n∑

i=1

s(0, t, ei)qi.

We can follow an analogous argument if qi have other than negative signs to obtain
in general for q with qi ̸= 0 for all i = 1, . . . , n,

s(0, t, q) =

n∑
i=1

−(sign qi)s(0, t,−(sign qi)ei)qi.

A similar argument, using a box with one side much shorter than the other n−1,
for example Ωh =

{
x : |xi| ≤ h, i = 1, . . . , n− 1, |xn| ≤ h2

}
for the case en, yields

that s is odd in ν,

s(x, t, ei) = −s(x, t,−ei) for all i = 1, . . . , n.

Therefore we can write

s(x, t, q) =

n∑
i=1

s(x, t, ei)qi.

We define

σij(x, t) = si(x, t, ej) for i, j = 1, . . . , n.

□
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