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Understanding the evolution of small crystals has been a challenging problem of
material science and mathematical modeling. In this regime, the evolution seems to be
governed by the surface energy, whose effects are usually modeled by mean curvature
terms. Due to the lattice structure of a typical crystal, the surface energy density
is anisotropic. In fact, it is postulated that the surface energy density has certain
singularities and such anisotropies are called crystalline. This causes difficulties for the
definition of an anisotropic (crystalline) mean curvature, a suitable notion of solutions
of the resulting surface evolution problem, and the introduction of an efficient numerical
method. In this talk, we discuss some of the recent developments, and in particular
focus on the level set method approach to the so-called crystalline mean curvature flow.

1. Crystalline mean curvature flow

Crystalline mean curvature was introduced independently by Angenent and Gurtin [3]
and Taylor [33] to model the growth of small crystals, see also [5, 25]. The surfaces
of solid and liquid bodies, such as small crystals or water droplets, have a surface
energy. This is usually expressed as a surface integral of a surface energy density
σ : Sn−1 → (0,∞) over the boundary of a set E ⊂ Rn, representing the body,

F(E) :=

∫
∂E

σ(ν) dS,

where ν : ∂E → Sn−1 is the unit outer normal of E. n is the dimension, usually 2 or 3.
For many materials, especially liquids, σ is a constant on the unit sphere Sn−1, given
by the surface tension. This surface energy is a manifestation of the fact that the atoms
or molecules forming the body have a smaller interaction energy when surrounded by
the particles of the same kind. Liquids, typically, do not have any preferred direction in
the distribution of particles, and therefore the surface energy density is isotropic.
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Figure 1: Left: Crystal of atoms on a regular lattice. Right: The 1-level set of the
associated surface energy density σ and its Wulff shape W .



The situation is quite different for crystals. Let us give a simplified illustration.
If we suppose that the atoms are distributed along the regular square lattice in two
dimensions, every atom inside the body has exactly four neighbors with which it creates
chemical bonds, see Figure 1. On the surface, however, some of these bonds are broken
where a neighbor is missing and the surface energy is proportional to the number of the
broken bonds. This number is given in terms of the taxicab (`1) length of the surface,
not the usual Euclidean length. In particular, in this case σ(ν) ∼ ‖ν‖1 := |ν1|+ |ν2|,
where ν is the macroscopic unit outer normal. This is the basic motivation of the
introduction of nondifferentiable surface energy densities.

For convenience, we will assume that σ is positively one-homogeneously extended
from Sn−1 to Rn as

σ(p) = |p|σ( p
|p|), p ∈ Rn \ {0},

σ(0) = 0, where |p| := (
∑

i |pi|2)1/2 is the usual Euclidean norm.
If σ is convex on Rn and σ(p) > 0 for all p ∈ Rn\{0}, we call it an anisotropy. We are

in particular interested in anisotropies σ that are piece-wise linear, such as the `1-norm
σ(p) = ‖p‖1 :=

∑
i |pi|. Such anisotropies will be called crystalline anisotropies.

The optimal shape of the crystal, that is, the shape with minimal surface energy for
a given volume, is a translation and scaling of the Wulff shape

W := {x : x · p ≤ σ(p), p ∈ Rn}.

The evolution {Et}t≥0 of the body driven by the dissipation of the surface energy
then leads to a formal gradient flow

β(ν)V = κσ + f on ∂Et, (1.1)

where V is the normal velocity of the surface ∂Et, f = f(x, t) is a given external force,
and β : Sn−1 → (0,∞) is a mobility. Finally, −κσ is the first variation of the surface
energy F at Et. κσ is usually called the anisotropic mean curvature of the surface.

If σ ∈ C2(Rn \ {0}) and {p : σ(p) < 1} is strictly convex, then it is well-known [17]
that the anisotropic mean curvature can be evaluated as

κσ = − div∂E(∇σ)(ν),

where div∂E is the surface divergence on ∂E.
When σ is crystalline, the situation is significantly more complicated. In particular,

even if ∂E is smooth, ∇σ(ν) will be discontinuous (or not even defined) on some parts
of the surface. Therefore κσ might not be defined, or might not be a function.

Instead, following for example [5], we define the subdifferential of σ as

∂σ(p) := {ξ ∈ Rn : σ(p+ h)− σ(p) ≥ ξ · h, h ∈ Rn},

where ξ · h is the usual inner product on Rn. Note that ∂σ(p) is a nonempty compact
convex subset of Rn. We replace ∇σ(ν) by a vector field z : ∂E → Rn, usually
called a Cahn-Hoffman vector field, that is a selection of ∂σ(ν(x)) on ∂E, that is,
z(x) ∈ ∂σ(ν(x)), x ∈ ∂E. However, now there are multiple choices of z which potentially
lead to different values of κσ = − div∂E z. It turns out that a reasonable choice is a



vector field zmin that minimizes ‖− div∂E z + f‖L2(∂E). The crystalline (mean) curvature
is then defined as

κσ := − div∂E(zmin).

Such a choice is motivated by the standard theory of monotone operators by [10,
27]. Furthermore, since the Euler-Lagrange equation of the minimization problem is
∇(− div∂E z+f) = 0, this choice yields κσ +f that is constant, if possible, on flat parts,
or facets, of the crystal parallel to the flat parts of the Wulff shape W . Therefore facets
are usually preserved during the evolution, as expected. However, κσ might be even
discontinuous on facets, and then facet breaking or bending occurs [8] and Figure 4.
This poses a serious difficulty for introducing a suitable notion of solutions for this
problem. Since κσ is itself given as a solution of a minimization problem, it is in general
difficult to evaluate it, except in special circumstances. Moreover, κσ is a nonlocal
quantity on the facets of the crystal as the following example shows.

Example. Consider the cubic anisotropy σ(p) = ‖p‖1 :=
∑n

i=1 |pi| and suppose that
the initial shape is the cube centered at 0 with side-length L0 > 0, β ≡ 1. Let
us try to find {Et}t≥0. It is not difficult to see that for a cube QL = (−L

2
, L

2
)n,

L > 0, the vector field z(x) = x
σ◦(x)

is a Cahn-Hoffman vector field on ∂QL, where

σ◦(x) := sup {x · p : σ(p) ≤ 1}. σ◦ is the convex polar of σ and it is the dual norm
of σ, σ◦(x) = ‖x‖∞ := max1≤i≤n |xi|. In particular, σ0(x) = L

2
on ∂QL. Therefore

div∂QL
z = 2

L
(n − 1). Since it is a constant on the facets, z actually minimizes

‖− div z‖L2(∂QL) among all Cahn-Hoffman vector fields, and therefore κσ = − 2
L

(n− 1)

if f ≡ const. We deduce that, if 2
L0

(n− 1) ≥ f ≡ const so that solution is shrinking,

the solution of (1.1) is {Et}t≥0, Et = QL(t), where L(0) = L0 and L′ = − 2
L

(n− 1) + f .

When f = 0, the unique solution is L(t) =
√
L2

0 − 4(n− 1)t. At time t1 :=
L2
0

4(n−1)
the

cube vanishes.
If the forcing term f is strong enough, the crystal will grow. However, it will only

stay a cube as long as the velocity of corners is less than f . If the speed of the corners
is bigger, the corners will round up, as can be easily seen by the comparison principle.
See for example [21] and references therein.

Introducing a notion of solutions for (1.1) with the crystalline anisotropy have been
a challenging problem. In two dimensions, if f is constant on facets, the situation is
somewhat simpler since κσ is constant on facets of the crystal parallel to the facets of the
Wulff shape W . Therefore if the initial shape is a polygon with edges parallel to edges
of the Wulff shape, the facets will move without breaking or bending. Their evolution
can be tracked by the crystalline algorithm [33], which also yields efficient numerical
methods. However, these methods cannot treat evolutions that are not strictly faceted.

In three dimensions, the situation is significantly more complicated by the possible
bending or breaking of facets. There is an extensive number of publications that is
beyond the scope of this abstract, for instance [6–9], and [5] for an introduction to the
topic and references. Recently, Chambolle, Morini and Ponsiglione [12] introduced a
well-posed notion of solutions for the particular velocity law V = σ(ν)κσ. Independently,
Y. Giga and the author introduced a well-posed notion of viscosity solutions for the
level set formulation of (1.1) in the full generality, but constant f , for bounded crystals,
see Section 2.

As for the available numerical results, published results concerning the purely
crystalline anisotropy so far seem to only treat the two dimensional evolution. However,



the algorithm proposed in [11,29] generalizes naturally to three dimensions, and can
easily accommodate a general external force as explained in Section 3. We present
some of the results of this implementation below. Let us also mention the interesting
three dimensional results of [4], who develop a finite element method for the Stefan
problem with Gibbs-Thomson law that features an almost-crystalline, but still smooth,
anisotropic curvature. However, their method does not seem to be able to treat
topological changes. See also [16] for a survey of various numerical approaches.

2. Level set method
The level set method for the mean curvature flow was introduced and developed in
[13,15,30]. The basic idea is to introduce an auxiliary function u : Rn × [0,∞), whose
evolution of every level set {{x ∈ Rn : u(x, t) < c}}t≥0, c ∈ R, satisfies the velocity law
(1.1). It is easy to see [17] that in this case

V = − ut
|∇u|

, ν =
∇u
|∇u|

, and κσ = − div[(∇σ)(∇u)].

Therefore u formally satisfies the equation

−β
(
∇u
|∇u|

)
ut
|∇u|

= − div[(∇σ)(∇u)] + f in Rn × 0. (2.1)

If σ is a crystalline anisotropy, ∇σ might be discontinuous and therefore the
differential operator on the right-hand side is very singular. In fact, it is a nonlocal
operator on flat parts of the surface of the crystal in the directions of the flat parts of
the Wulff shape. Therefore this equation does not fit withing the classical framework
of viscosity solutions for geometric equations [13, 15]. The extension of the viscosity
theory to (2.1) had been a challenging open problem. In one dimension, which also
covers two-dimensional crystals, the theory was developed by M.-H. Giga, Y. Giga,
Rybka and others [18–20]. Y. Giga and the author recently introduced a new notion of
viscosity solutions for (2.1) with f independent of the space variable that applies to
the crystalline anisotropy [22,23]. This notion is well-posed for bounded crystals and
stable with respect to a regularization of the anisotropy, that is, with respect to the
approximation of the crystalline curvature by smooth anisotropic curvatures. The main
idea is the suitable interpretation of the operator div[(∇σ)(∇u)] as the divergence of a
minimizing Cahn-Hoffman vector field z ∈ ∂σ(∇u), which allows us to connect this to
the theory of monotone operators of [10,27].

3. The algorithm
An efficient method for the mean curvature flow (1.1) is based on a minimizing movement
formulation due to [11], that can be efficiently solved by a split Bregman iteration
proposed by [29]. Suppose that Ω ⊂ Rn is a bounded domain and that the evolving set
is contained in Ω.

The insight of Chambolle is to formulate the minimizing scheme of Almgren, Taylor
and Wang [2] in terms of the signed distance function, so that the evolving set is its
level set. In [11], he proposed the time discretization by the minimization problem (in
[11] f ≡ 0)

vm+1 ← arg min
v

(
1

2h
‖v − wm‖2 +

∫
Ω

σ(Dv) dx− 〈v, f〉
)
, (3.1)



where h > 0 is a chosen time step and wm is the signed distance function of the set
at the previous time step m, induced by the metric given by the mobility β. The
minimization is performed over all v ∈ L2(Ω), and ‖·‖ and 〈·, ·〉 are the L2(Ω)-norm and
inner product, respectively. The total variation energy

∫
Ω
σ(Dv) dx is defined as the

lower semicontinuous envelope of v 7→
∫

Ω
σ(∇v) dx for v in the Sobolev space W 1,1(Ω).

Note that (3.1) is the resolvent problem for the total variation energy with parameter 1
h
.

In other words, it is the implicit Euler discretization of the total variation flow. Since
|∇v| ∼ |∇w| = 1, we see that v−w

h
∼ V .

The full algorithm for the minimizing movements discretization Em, m = 0, 1, 2, . . .
at time steps tm = mh reads: Set E0 as the initial data and then iteratively for
m = 0, . . . do

wm ← signdistβ Em

vm+1 ← arg min
v

(µ
2
‖v − wm‖2 + ‖σ(∇v)‖1 − 〈f, v〉

)
,

Em+1 ← {vm+1 < 0},

(3.2)

where µ = 1
h
, and f is a given source, and we write ‖σ(∇v)‖1 =

∫
Ω
σ(Dv) dx. Note that

the minimization is equivalent to the minimization of µ
2
‖v − (wm + µ−1f)‖2

+‖σ(∇v)‖1 .
The signed distance function must correspond to the anisotropy β. If β ≡ 1, it is just
the standard signed distance function induced by the Euclidean metric,

signdistEm(x) :=

{
dist(x, ∂Em), x /∈ Em,
− dist(x, ∂Em), x ∈ Em.

As h→ 0, the evolution will converge to a continuous evolution {Et}t≥0, see [11].
In the crystalline anisotropy case, it is known that in two dimensions this evolution is
given by the unique viscosity solution [26]. It is not clear at the moment if this also
holds in three dimensions for viscosity solutions introduced in [22, 23], although we
expect it to be the case.

It might seem that the minimization problem in (3.2) is rather difficult for numerical
computation, mainly due to the non-differentiable second term. In particular, the
standard minimization methods like conjugate gradients or Newton iteration are poorly
suited. For this reason, Chambolle proposed an iterative algorithm in [11]. More recently,
it was recognized in [29] that the minimization problem can be addressed by the so-called
proximal algorithms [28], the alternative direction method of multipliers (ADMM) or
the split Bregman method [24]. To find the minimizer v of µ

2
‖v − u‖2 + ‖σ(∇v)‖1, we

choose λ > 0, set b0 = d0 = 0 and then iterate for k = 0, 1, . . .

vk+1 ← arg min
v

µ

2
‖v − u‖2 +

λ

2
‖dk −∇v − bk‖2 , (3.3)

dk+1 ← arg min
d
‖σ(d)‖1 +

λ

2
‖d−∇vk+1 − bk‖2 , (3.4)

bk+1 ← bk +∇vk+1 − dk+1, (3.5)

until some stopping condition is reached, typically when ‖vk+1 − vk‖2 is sufficiently
small. Heuristically, this scheme introduces a new gradient variable d, and then enforces
the constraint d = ∇v by a quadratic penalty. Since we are minimizing a sum of convex
terms over two variables, the problems can be decoupled into (3.3) and (3.4). (3.5)



is called a Bregman iteration, and it helps to enforce the constraint exactly. Note
that when convergence is achieved, (3.5) implies d = ∇v. For a detailed discussion of
motivation, convergence and other properties, see [24].

The advantage of this iteration process is the simplicity of the subproblems. The
first minimization problem (3.3) is equivalent to finding the solution v of

(µ− λ∆)v = µu+ λ div(bk − dk) in Ω, (3.6)

with an appropriate boundary condition, for instance Neumann. It is not necessary to
solve it accurately, so one or two Gauss-Seidel iterations are enough [24].

To find a numerical solution of Chambolle’s algorithm, we assume that Ω = (−1
2
, 1

2
)n

is a cube and use the finite difference method to discretize (3.2). In particular, we
represent v, d, b by their values on the lattice kZn ∩ Ω, where k = 1

M
, M ∈ N, is the

space discretization step. The elliptic problem (3.6) is solved by the Gauss-Seidel
iteration for the standard 5-point fixed difference scheme with zero Neumann boundary
condition.

The minimization problem (3.4) for d in the discrete case completely decouples at
each node. Then, for each node i the minimum dk+1,i is the so-called shrink operator
[24]

dk+1,i = shrinkσ((∇vk+1 + bk)i, 1/λ). (3.7)

Note that the shrink operator can be expressed using the orthogonal projection on the
Wulff shape W of σ [29],

shrinkσ(ξ, 1/λ) := (I − PW/λ)(ξ).

In typical cases of isotropic, cubic and hexagonal anisotropies, that is, when the Wulff
shapeW is a sphere, a cube or a hexagonal prism, respectively, the orthogonal projection
is very simple. More general Wulff shapes can be handled by the method proposed in
[29].

It is interesting to relate the Bregman iterate b to the Cahn-Hoffman vector field
in the definition of the anisotropic (crystalline) mean curvature. In particular, for a
node i, if convergence is achieved, (3.7) yields di = shrink(di + bi, 1/λ) and we have
bi = PW/λ(di + bi). From the last equality, we see that either di = 0, but then λbi ∈ W ,
or di 6= 0, but then λbi ∈ ∂W and di is a normal of ∂W at λbi. In other words,
λbi ∈ ∂σ(di). From (3.6) we deduce that v−u

h
= λ div b. Hence λb is the discrete

Cahn-Hoffman vector field for the resolvent problem (3.1).

4. Redistance
At each time step in the algorithm (3.2), the signed distance function to the 0-level set
of the solution of the minimization problem, signdistβ {vm < 0}, has to be recomputed.
This is sometimes referred to as redistance. This problem amounts to solving the
(anisotropic) eikonal equation |∇w|β = 1 with boundary data w = 0 on ∂E. There are
various efficient methods for doing this, including an iteration scheme [32], as well as
more direct algorithms like the fast marching method [31] or the fast sweeping method
[34]. We choose the fast sweeping method due to its simplicity and efficiency on the
modern hardware, in particular the cache locality.

The boundary ∂E is given as the 0-level set of a function v with discrete values on
a regular grid. Unfortunately, in general the 0-level set of the resulting approximation



w of the signed distance function will be different from the 0-level set of the original
function v. The fast marching and fast sweeping methods require an initialization
step, where the distance function is assigned at grid points that are direct neighbors of
the 0-level set of v. A special care must be taken so that the interface is not moved
unnecessarily, as these effects might quickly accumulate over a series of consecutive time
steps. In particular, at points where the surface should not move, a typical case for
non-convex and non-concave facets, this unwanted effect might dominate the evolution.

There are a few standard schemes to initialize the nearby values in the literature,
by analyzing the intersection of the level set with the grid lines [1, 11]. However, they
do not seem to produce the correct value of the distance function even if the level set is
flat, which is a common situation in the crystalline mean curvature flow. Furthermore,
the generalization to three dimensions seems unnecessarily complicated.

We choose a naive method that appears to be superior in our case, is very simple
to implement in an arbitrary dimension, and that computes the exact signed distance
function in a neighborhood of the flat facets. Let us assume that β ≡ 1. The idea
is to split the squares or the cubes of the uniform grid into two right triangles or six
tetrahedra, respectively, and suppose that v is affine on each of them. This is very
much in the spirit of the marching tetrahedra method [14]. Then for all elements that
the 0-level set intersects, that is, on which v changes sign, we set the initial value of the
signed distance function at each vertex of the element to be the value of v normalized
by the norm of the gradient of the affine function given by v on the element. If a given
grid node is a vertex of multiple elements with 0-level set in them, we set the initial
value to be the minimum over all the elements. To be more explicit, suppose that vi, wi,
i = 1, . . . , N are the values at the grid nodes xi, and Tj, j = 1, . . . , K are the elements
on which v changes sign. We initialize wi to

wi = (sign vi) min
1≤j≤K
xi∈∂Tj

|vi|∣∣∣∇v|Tj ∣∣∣ ,
where the minimum is defined as +∞ if it is over an empty set. This initialization
method is as second order accurate, O(k2), near smooth surface, in contrast to the first
order accuracy of the initialization in [1, 11]. Moreover, the unwanted artifacts caused
by redistance seem to be reduced, see Figure 2.

After this initialization step, we perform the 2n sweeps of the fast sweeping method
[34].

5. Numerical results

We present a few simple numerical results for an illustration based on our implementation
of the above algorithm in the Rust programming language. The domain is always
taken to be Ω = (−1

2
, 1

2
)n and λ = 2µ in (3.3), (3.4). The stopping condition is chosen

as ‖vk+1 − vk‖`2 < 3 × 10−4Mα, where α = 0 for n = 2 and α = 1
2

for n = 3, and
‖·‖`2 is the discrete `2-norm. We use M = 64 in n = 2 and M = 256 for n = 3. The
performance for n = 3 is ∼ 1min/timestep on a single core of i7-4770K.

Various optimizations, such as performing the computation only in a small neigh-
borhood of the level set to significantly reduce the computational complexity, as well
as the coupling of the curvature flow with the heat equation via the Gibbs-Thomson
relation are under investigation.
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Figure 2: Flow with cubic (left) and hexagonal (right) anisotropies: h = 2.5 × 10−4,
M = 64, plot step 0.004. Even at this relatively low resolution, artifacts caused by
redistance are not apparent.
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Figure 3: Left: A triangular anisotropy demonstrates a topological change in 2D for
non-even anisotropies. Right: Cubic anisotropy with a non-constant source—a multiple
of the standard mollifier with radius 0.2 located at (0.2, 0).

Figure 4: Facet breaking example in 3D [8] at three selected times—L-shaped facets
break into rectangular facets. The rightmost figure shows a detail of the facet bending
and rounding of a corner in the third figure.



Figure 5: Topological change in 3D with a hexagonal anisotropy—a pinch-off of an
initial dumbbell shape.
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