Numerics for the two-phase Stefan problem

Norbert Pozar

Introduction

The following videos show the evolution of enthalpy hh in the two-phase Stefan problem with no-flux boundary in 2D: {ht(x,t)Δχ(h(x,t))=f(x,t),in Ω×(0,T)χ(u)ν=0,on Ω×(0,T)h(x,0)=h0(x), \begin{cases} h_t(x,t) - \Delta \chi(h(x,t)) = f(x,t), & \text{in } \Omega \times (0, T)\\ \frac{\partial \chi(u)}{\nu} = 0, & \text{on } \partial \Omega \times (0,T)\\ h(x,0) = h_0(x), \end{cases} where hh is the enthalpy, ff is the volumetric heat source and χ(h)\chi(h) is the temperature. The function χ\chi is defined as χ(s)=min(s,max(0,s1))={ss<0,00s1s1s>1, \chi(s) = \min(s, \max(0, s -1)) = \begin{cases} s & s < 0,\\ 0 & 0 \leq s \leq 1 & s-1 & s > 1, \end{cases} see figure 1.

Figure 1: Function \chi(h)

The solutions contain the following regions:

Images were produced using Mathematica 7 and encoded using mencoder. To view these videos, you need to be able to play videos from youtube.

Videos

Appearance of a mushy region

Dependence of the free boundary velocity on the distribution of energy in the mushy region

Inhomogeneous free boundary velocity

Homogenization